Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,111)

Search Parameters:
Journal = Metals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Influence of UV Illumination on the Corrosion Behavior of New 3Ni Weathering Steel in Marine Atmospheric Environments
Metals 2023, 13(9), 1543; https://doi.org/10.3390/met13091543 (registering DOI) - 01 Sep 2023
Abstract
We investigate the effect of pure darkness and UV illumination on the corrosion process of 3Ni weathering steels involved in both marine atmospheric environments. The corrosion behavior of 3Ni steel in both environments was assessed by cyclic acceleration experiments, electrochemical measurements, morphological analysis [...] Read more.
We investigate the effect of pure darkness and UV illumination on the corrosion process of 3Ni weathering steels involved in both marine atmospheric environments. The corrosion behavior of 3Ni steel in both environments was assessed by cyclic acceleration experiments, electrochemical measurements, morphological analysis and physical phase analysis. The results show that UV illumination affects the corrosion process through the photovoltaic effect of the corrosion products, with photoelectrons and photo-vacancies participating in the redox reaction between the substrate and the atmospheric environment, thereby affecting the corrosion rate of 3Ni steel, the physical composition of the corrosion products and the denseness of the rust layer. Full article
(This article belongs to the Topic Materials for Corrosion Protection)
Show Figures

Figure 1

Article
Influence of the Manufacturing Process on the Corrosion and Mechanical Behavior of Esophageal Stents
Metals 2023, 13(9), 1542; https://doi.org/10.3390/met13091542 (registering DOI) - 01 Sep 2023
Abstract
Esophageal nitinol stents are an established method for treating swallowing difficulties caused by obstructing cancer. This raesearch investigates the influence of different qualities of raw metal alloys in combination with production technology on corrosion resistance in standardized simulated gastric fluid (SGF). Four different [...] Read more.
Esophageal nitinol stents are an established method for treating swallowing difficulties caused by obstructing cancer. This raesearch investigates the influence of different qualities of raw metal alloys in combination with production technology on corrosion resistance in standardized simulated gastric fluid (SGF). Four different international stent manufacturers produced samples of their standard stents from nitinol sourced from three different alloy manufacturers. The stents were subjected to a 6-week immersion in SGF. During the immersion, the surface was studied at specified intervals using microscopy. The surface of the samples was also studied by X-ray Photoelectron Spectroscopy and after immersion the released ions were analyzed. Results demonstrated that both raw material and certain steps in the manufacturing process negatively affect corrosion resistance. Analysis of the SGF showed that the amount of nickel released is proportional to the degree of corrosion attack. Finally, current accepted standard test methods are inadequate for assessing susceptibility to corrosion by gastric acid and should take the low pH of the implanted environment into account. Conversely, certain measures in the manufacturing process are able to reduce the impact of the base material on corrosion susceptibility. Full article
(This article belongs to the Special Issue Advances in Stability of Metallic Implants)
Show Figures

Figure 1

Article
Creep Behavior and Deformation Mechanism of a Third-Generation Single Crystal Ni-Based Superalloy at 980 °C
Metals 2023, 13(9), 1541; https://doi.org/10.3390/met13091541 (registering DOI) - 01 Sep 2023
Abstract
As the primary choice for aero-engine turbine blades, creep resistance is an important mechanical property for the developing third-generation single crystal Ni-based superalloys. The creep behavior of the superalloy in the [001] orientation was studied at 980 °C under a series of stress [...] Read more.
As the primary choice for aero-engine turbine blades, creep resistance is an important mechanical property for the developing third-generation single crystal Ni-based superalloys. The creep behavior of the superalloy in the [001] orientation was studied at 980 °C under a series of stress levels, accompanied with scanning electron microscope (SEM) and transmission electron microscope (TEM) observation to investigate the microstructure and deformation mechanism. The deformation mechanism of the alloy is found to be dislocation gliding, propagating and forming a dislocation network in the γ/γ′ interface. Dislocation networks could hinder the movement of dislocation and decrease the creep rate to a constant during the steady-creep stage. The formation of dislocation networks was analyzed due to the interaction of <110> {111} dislocations. Then dislocations cut into γ′ phases as individual <110> super-dislocations, anti-phase boundary dislocation pairs, and stacking faults. The <110> super-dislocation in the γ′ phase may cross-slip into the {001} plane from the {111} plane to form Kear–Wilsdorf locks, which could inhibit dislocations from gliding or cross-slipping and then enhance the creep resistance. Full article
(This article belongs to the Special Issue High-Temperature Oxidation and Corrosion of Structured Materials)
Show Figures

Figure 1

Article
The Effect of Defect Characteristics on Prediction of Fatigue Life of TC4 Titanium Alloy Welded Joints
Metals 2023, 13(9), 1540; https://doi.org/10.3390/met13091540 - 31 Aug 2023
Viewed by 102
Abstract
The size and depth of defects significantly affect fatigue performance; the main purpose of this article is to clarify the effect of stress correction factors caused by defects on the fatigue life of α + β Type titanium alloy welded joints. In order [...] Read more.
The size and depth of defects significantly affect fatigue performance; the main purpose of this article is to clarify the effect of stress correction factors caused by defects on the fatigue life of α + β Type titanium alloy welded joints. In order to investigate the fatigue characteristics of α + β Type titanium alloy welded joints, axial constant amplitude loading fatigue tests were performed with a stress ratio of −1. The test results show that the fatigue life continues to increase as the stress amplitude decreases, and the failure modes can be classified into two types: interior failure and surface failure. A fatigue parameter (λ) determined by both defect depth and size was proposed which allowed for a good generalization of the data point distribution in short and long-life regions. The stress correction factor (W) related to the S–N characteristics was constructed by combining the λ and average defect size, and it effectively improved the dispersion of the test data. Continuing, the fatigue life prediction model was established under the condition that the defect type and size can be estimated or detected on the basis of the dislocation energy method. The results indicated that the evaluated values of the new life model associated with W are in good agreement with the test results. Full article
(This article belongs to the Special Issue Fatigue, Damage and Fracture of Metallic Materials)
Show Figures

Figure 1

Article
Localized Perturbation Load Approach for Buckling Design of Thin-Walled Steel Cylindrical Shells under Partial Axial Compression
Metals 2023, 13(9), 1539; https://doi.org/10.3390/met13091539 - 31 Aug 2023
Viewed by 118
Abstract
A thin-walled steel cylindrical shell is a common engineering structure that has an efficient load-carrying capacity. This structure is more easily subjected to partial axial compression loads in application, and buckling is the main failure mode. However, there are few available design methods [...] Read more.
A thin-walled steel cylindrical shell is a common engineering structure that has an efficient load-carrying capacity. This structure is more easily subjected to partial axial compression loads in application, and buckling is the main failure mode. However, there are few available design methods for partial axially compressed steel cylindrical shells. Motivated by this, a design method called the localized perturbation load approach (LPLA) is proposed in this paper. The finite element framework for the application of LPLA is established. The location and number of perturbation loads are determined by considering the imperfection sensitivity and the buckling failure mode of partial axial compressed cylinders. A series of buckling experiments are carried out to validate the LPLA method. In addition, the reliability of LPLA for the design of cylindrical shells with different imperfection locations and dimensions is also verified. The results show that LPLA can give conservative and reliable lower-bound buckling loads. Therefore, LPLA can be used as a design method for thin-walled steel cylindrical shell structures under partial axial compression in actual engineering. Full article
Show Figures

Figure 1

Article
The Cyclic Stability of the Superelasticity in Quenched and Aged Ni44Fe19Ga27Co10 Single Crystals
Metals 2023, 13(9), 1538; https://doi.org/10.3390/met13091538 - 30 Aug 2023
Viewed by 146
Abstract
The effect of aging (at 773 K for 1 h) on the cyclic stability of superelasticity was studied in preliminarily quenched (after annealing at 1448 K for 1 h) Ni44Fe19Ga27Co10 [001]-oriented single crystals. It was shown [...] Read more.
The effect of aging (at 773 K for 1 h) on the cyclic stability of superelasticity was studied in preliminarily quenched (after annealing at 1448 K for 1 h) Ni44Fe19Ga27Co10 [001]-oriented single crystals. It was shown that NiFeGaCo single crystals (both quenched and aged) exhibited highly stable superelasticity during more than 105 loading/unloading cycles in compression without destruction. The degradation of the superelasticity curves was divided into stages, and each stage of degradation was carefully considered. The precipitation of ω-phase particles led to a change in the degradation mechanism of superelasticity in the aged crystals. The main degradation mechanism for quenched crystals is a formation of uniform distribution of dislocations; for aged crystals, the microstructural degradation mechanisms consist of a non-uniform distribution of dislocations around the particles and the appearance of residual martensite. Full article
(This article belongs to the Special Issue Metallic Functional Materials: Development and Applications)
Show Figures

Figure 1

Article
Simulation and Optimization of Shot Peening Process for CoCrFeNiAlx High-Entropy Alloy
Metals 2023, 13(9), 1537; https://doi.org/10.3390/met13091537 - 30 Aug 2023
Viewed by 166
Abstract
In this work, Ti-10V-2Fe-3Al alloy was selected as the test material, and the shot peening process of a CoCrFeNiAlx system high-entropy alloy was simulated based on effective test conditions, and the effects of dry shot peening and wet shot peening on the surface [...] Read more.
In this work, Ti-10V-2Fe-3Al alloy was selected as the test material, and the shot peening process of a CoCrFeNiAlx system high-entropy alloy was simulated based on effective test conditions, and the effects of dry shot peening and wet shot peening on the surface properties were determined. Preliminary simulation results the surface of the test sample display a clear plastic deformation state that gradually diminishes and shifts towards the outermost layer. The stress transfer of the test sample gradually decreases, showing a gradient change, and the twin density also shows a random sample change. Then, the high-entropy alloy shot peening process was optimized, and the best process parameters were determined by analyzing the microhardness data, depth of action layer, and surface state. It was found that after wet shot peening, a new characteristic peak is generated, and with the increase in the size of the shot, its overall kinetic energy becomes increasingly higher, the strain energy of the material surface becomes increasingly higher, and the grain refinement is relatively high. This work provides a new approach to investigating the issues that are present during the shot peening process of CoCrFeNiAlx system high-entropy alloys. Full article
Show Figures

Figure 1

Review
Laser Beam Machining of Titanium Alloy—A Review
Metals 2023, 13(9), 1536; https://doi.org/10.3390/met13091536 - 30 Aug 2023
Viewed by 171
Abstract
This study investigates the laser beam machining mechanism, surface formation mechanisms, heat-affected zone, taper formation, and the dimensional deviation of the titanium alloy, based on the information available in literature. The heat induced by the laser beam melts and vaporises titanium alloy, which [...] Read more.
This study investigates the laser beam machining mechanism, surface formation mechanisms, heat-affected zone, taper formation, and the dimensional deviation of the titanium alloy, based on the information available in literature. The heat induced by the laser beam melts and vaporises titanium alloy, which is removed by a high pressure-assisted gas. The machined titanium alloy surface is expected to have craters and resolidified materials which were contributed by the low thermal conductivity of the titanium alloy. Taper and circularity error can be minimised by optimising the laser parameter, but it cannot be avoided in the laser beam machining of titanium alloy. Laser beam machining induces a non-diffusion phase transformation, which slightly changes the surface mechanical properties of the titanium alloys. Laser beam machining is gaining popularity as a way to improve the surface finish quality and properties of titanium components manufactured by additive manufacturing processes. To enhance the machining efficacy of titanium alloys, several hybrid machining processes were proposed. Full article
Show Figures

Figure 1

Article
Ratcheting–Fatigue Damage Assessment of Additively Manufactured SS304L and AlSi10Mg Samples under Asymmetric Stress Cycles
Metals 2023, 13(9), 1534; https://doi.org/10.3390/met13091534 - 30 Aug 2023
Viewed by 191
Abstract
The present study aims to investigate the interaction of ratcheting and fatigue phenomena for additively manufactured (AM) samples of SS304L and AlSi10Mg undergoing uniaxial asymmetric stress cycles. Overall damage was accumulated through fatigue and ratcheting on AM samples prepared from three-dimensional-printed plates along [...] Read more.
The present study aims to investigate the interaction of ratcheting and fatigue phenomena for additively manufactured (AM) samples of SS304L and AlSi10Mg undergoing uniaxial asymmetric stress cycles. Overall damage was accumulated through fatigue and ratcheting on AM samples prepared from three-dimensional-printed plates along vertical and horizontal directions. Fatigue damage was evaluated based on the strain energy density fatigue approach and ratcheting damage was calculated through use of an isotropic–kinematic hardening framework. The isotropic description through the Lee–Zavrel (L–Z) model formed the initial and concentric expansion of yield surfaces while the Ahmadzadeh–Varvani (A–V) kinematic hardening rule translated yield surfaces into the deviatoric stress space. Ratcheting of AM samples was simulated using finite element analysis through use of triangular and quadrilateral elements. Ratcheting values of the AM samples were simulated on the basis of Chaboche’s materials model. The predicted and simulated ratcheting damage curves placed above the experimental fatigue–ratcheting experimental data while predicted fatigue damage curves collapsed below the measured values. The overall damage was formulated to partition damage weights due to fatigue and ratcheting phenomena. Full article
Show Figures

Figure 1

Article
Synergistic Effect of Alloying on the Strength and Ductility of High Carbon Pearlitic Steel
Metals 2023, 13(9), 1535; https://doi.org/10.3390/met13091535 - 30 Aug 2023
Viewed by 186
Abstract
In this work, the effects of the micro-alloying of Mn, Ni, and Si on the microstructure and mechanical properties of high-carbon pearlite steels were investigated. The results indicated that the addition of solely Ni to high-carbon pearlitic steel can enhance the strength through [...] Read more.
In this work, the effects of the micro-alloying of Mn, Ni, and Si on the microstructure and mechanical properties of high-carbon pearlite steels were investigated. The results indicated that the addition of solely Ni to high-carbon pearlitic steel can enhance the strength through the refinement of interlamellar spacing, but work-hardening in the ferrite of the pearlite colony may be delayed, leading to a reduction in area. The multiple additions of Ni and the increase in Mn and Si contents in high-carbon pearlitic steel were beneficial to obtaining a balance between ultimate tensile strength and reduction in area. Three-dimensional atom probe tomography results showed Si partitioning into ferrite and Mn and Ni elements partitioning into cementite. The addition of Si inhibited the formation of a continuous network of grain-boundary cementite, leading to high strength and high ductility through optimization of the microstructure. Full article
(This article belongs to the Special Issue Phase Transformation and Microstructure Characterization in Steels)
Show Figures

Figure 1

Article
Proposal and Assessment of a Multiple Cycle-Continuous Cooling Transformation (MC-CCT) Diagram for Wire Arc Additive Manufacturing of Thin Walls
Metals 2023, 13(9), 1533; https://doi.org/10.3390/met13091533 - 29 Aug 2023
Viewed by 247
Abstract
Continuous cooling transformation (CCT) diagrams of base metals are common in welding. They can be built using physical or numerical simulations, each with advantages and limitations. However, those are not usual for weld metal, considering its variable composition due to the dilution of [...] Read more.
Continuous cooling transformation (CCT) diagrams of base metals are common in welding. They can be built using physical or numerical simulations, each with advantages and limitations. However, those are not usual for weld metal, considering its variable composition due to the dilution of the weld into the base metal. Wire Arc Additive Manufacturing (WAAM) is a distinctive case in which the interest in materials comparable with weld composition raises attention to estimating their mechanical properties. Notwithstanding, this concept is still not used in WAAM. Therefore, the aim of this work was to address a methodology to raise MC-CCT (Multiple Cycle Continuous Cooling Transformation) diagrams for WAAM by combining physical and numerical simulations. A high-strength low-alloy steel (HSLA) feedstock (a combination of a wire and a shielding gas) was used as a case study. To keep CCT as representative as possible, the typical multiple thermal cycles for additive manufacturing thin walls were determined and replicated in physical simulations (Gleeble dilatometry). The start and end transformations were determined by the differential linear variation approach for each thermal cycle. Microstructure analyses and hardness were used to characterise the product after the multiple cycles. The same CCT diagram was raised by a commercial numerical simulation package to determine the shape of the transformation curves. A range of austenitic grain sizes was scanned for the curve position matching the experimental results. Combining the experimental data and numerically simulated curves made estimating the final CCT diagram possible. Full article
(This article belongs to the Special Issue Directed Energy Deposition of Metal Alloys)
Show Figures

Figure 1

Article
Effect of Minor Ce Substitution for Pr on the Glass Formability and Magnetocaloric Effect of a Fe88Zr4Pr4B4 Metallic Glass
Metals 2023, 13(9), 1531; https://doi.org/10.3390/met13091531 - 29 Aug 2023
Viewed by 151
Abstract
In the present work, Fe88Zr4Pr3B4Ce1 metallic glass (MG) was successfully prepared by minor Ce substitution for Pr, and compared with Fe88Zr4Pr4B4 MG in terms of glass forming [...] Read more.
In the present work, Fe88Zr4Pr3B4Ce1 metallic glass (MG) was successfully prepared by minor Ce substitution for Pr, and compared with Fe88Zr4Pr4B4 MG in terms of glass forming ability (GFA), magnetic and magnetocaloric properties. The GFA, Tc and the maximum magnetic entropy change (−ΔSmpeak) of the Fe88Zr4Pr3B4Ce1 MG were found to decrease slightly. At the same time, the possible interaction mechanism of minor Ce replacing Pr was also explained. The critical exponents (β, γ and n) obtained by the Kouvel–Fisher method indicate that Fe88Zr4Pr3B4Ce1 MG near Tc exhibits typical magnetocaloric behavior of fully amorphous alloys. The considerable maximum magnetic entropy change (−ΔSmpeak = 3.84 J/(kg × K) under 5 T) near its Curie temperature (Tc = 314 K) as well as RCP (~ 646.3 J/kg under 5 T) make the Fe88Zr4Pr3B4Ce1 MG a better candidate as a component of the amorphous hybrids that exhibit table-shape magnetic entropy change profiles within the operation temperature interval of a magnetic refrigerator. Full article
Show Figures

Figure 1

Article
Intelligent and Adaptive System for Welding Process Automation in T-Shaped Joints
Metals 2023, 13(9), 1532; https://doi.org/10.3390/met13091532 - 29 Aug 2023
Viewed by 177
Abstract
The automation of welding processes requires the use of automated systems and equipment, in many cases industrial robotic systems, to carry out welding processes that previously required human intervention. Automation in the industry offers numerous advantages, such as increased efficiency and productivity, cost [...] Read more.
The automation of welding processes requires the use of automated systems and equipment, in many cases industrial robotic systems, to carry out welding processes that previously required human intervention. Automation in the industry offers numerous advantages, such as increased efficiency and productivity, cost reduction, improved product quality, increased flexibility and safety, and greater adaptability of companies to market changes. The field of welding automation is currently undergoing a period of profound change due to a combination of technological, regulatory, and economic factors worldwide. Nowadays, the most relevant aspect of the welding industry is meeting customer requirements by satisfying their needs. To achieve this, the automation of the welding process through sensors and control algorithms ensures the quality of the parts and prevents errors, such as porosity, unfused areas, deformations, and excessive heat. This paper proposes an intelligent and adaptive system based on the measurement of welding joints using laser scanning and the subsequent analysis of the obtained point cloud to adapt welding trajectories. This study focuses on the optimization of T-joints under specific welding conditions and is intended as an initial implementation of the algorithm, thus establishing a basis to be worked on further for a broader welding application. Full article
(This article belongs to the Special Issue Feature Papers in Welding & Joining)
Show Figures

Figure 1

Article
Insight into the Role of Mo Content on the Microstructure and Impact Toughness of X80 Thick-Walled Low-Temperature Pipeline Steel
Metals 2023, 13(9), 1530; https://doi.org/10.3390/met13091530 - 29 Aug 2023
Viewed by 220
Abstract
In this manuscript, the effects of Mo content on the microstructure and impact toughness of X80 thick-walled low-temperature pipeline steel were studied. Two test steels with different Mo content (0.25% and 0.40%) were prepared by the thermo-mechanical control process. The impact properties were [...] Read more.
In this manuscript, the effects of Mo content on the microstructure and impact toughness of X80 thick-walled low-temperature pipeline steel were studied. Two test steels with different Mo content (0.25% and 0.40%) were prepared by the thermo-mechanical control process. The impact properties were measured at −45 °C, and the microstructure evolution was observed via an optical microscope (OM), a scanning electron microscope (SEM), electron back-scattered diffraction (EBSD), and a transmission electron microscope (TEM). Each steel showed the formation of a mixed microstructure consisting of polygonal ferrite (PF), granular bainite (GB), and lath bainite (LB). Increasing Mo content resulted in the rise of LB at the expense of PF and GB. At the same time, the morphology of martensite/austenite (M/A) constituents changed from blocky to slender. The dislocation density in the ferrite matrix around the M/A constituents enhanced with an increase in Mo content. This also led to an increase in the microstrains around the M/A constituents. Also, the number fraction of the high angle grain boundary (HAGB) (MTA > 15°) decreased with the addition of more Mo content. Furthermore, with an increase in Mo content from 0.25% to 0.40%, the low-temperature impact toughness decreased from 206 to 57 J. Both an increase in the slender M/A constituents and a decrease in the HAGB number fraction deteriorated the low-temperature impact toughness of the X80 thick-walled low-temperature pipeline steel. Full article
Show Figures

Figure 1

Article
Study on Joining for Thin-Walled Aluminum Alloy/Steel Tubes by Electromagnetic Flanging Process
Metals 2023, 13(9), 1529; https://doi.org/10.3390/met13091529 - 29 Aug 2023
Viewed by 180
Abstract
A structure for joining thin-walled 6061-T6 aluminum alloy tube (outer tube) and Q195 steel tube (inner tube) by electromagnetic flanging process was proposed. The formation process, mechanical properties, failure modes, and morphology of the joint were investigated. The results showed that the outer [...] Read more.
A structure for joining thin-walled 6061-T6 aluminum alloy tube (outer tube) and Q195 steel tube (inner tube) by electromagnetic flanging process was proposed. The formation process, mechanical properties, failure modes, and morphology of the joint were investigated. The results showed that the outer tube impacted the inner tube, the flanges of the prefabricated holes on the outer tube were embedded into the prefabricated holes of the inner tube under the action of Lorentz force, and thus the mechanical locking joint was obtained. There were two tensile failure modes for the joints: Pull-out and fracture. Specifically, when the discharge energy was relatively high, the failure mode changed from pull-out to fracture. Combining the results of tensile tests and morphology observations, the maximum loads of the joints increased with the discharge energy. However, excessive discharge energy would lead to the brittle fracture of the inner tube, which was not beneficial to the service. Better discharge energy and the maximum load of the joint at this discharge energy were obtained. Full article
(This article belongs to the Special Issue Research Progress on Joining Dissimilar Material)
Show Figures

Figure 1

Back to TopTop