Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,228)

Search Parameters:
Journal = Marine Drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Spatial Distribution and Biochemical Characterization of Serine Peptidase Inhibitors in the Venom of the Brazilian Sea Anemone Anthopleura cascaia Using Mass Spectrometry Imaging
Mar. Drugs 2023, 21(9), 481; https://doi.org/10.3390/md21090481 - 30 Aug 2023
Viewed by 97
Abstract
Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent [...] Read more.
Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

Review
Bioactive Peptides from Barnacles and Their Potential for Antifouling Development
Mar. Drugs 2023, 21(9), 480; https://doi.org/10.3390/md21090480 - 30 Aug 2023
Viewed by 138
Abstract
Barnacles, a prevalent fouler organism in intertidal zones, has long been a source of annoyance due to significant economic losses and ecological impacts. Numerous antifouling approaches have been explored, including extensive research on antifouling chemicals. However, the excessive utilization of small-molecule chemicals appears [...] Read more.
Barnacles, a prevalent fouler organism in intertidal zones, has long been a source of annoyance due to significant economic losses and ecological impacts. Numerous antifouling approaches have been explored, including extensive research on antifouling chemicals. However, the excessive utilization of small-molecule chemicals appears to give rise to novel environmental concerns. Therefore, it is imperative to develop new strategies. Barnacles exhibit appropriate responses to environmental challenges with complex physiological processes and unique sensory systems. Given the assumed crucial role of bioactive peptides, an increasing number of peptides with diverse activities are being discovered in barnacles. Fouling-related processes have been identified as potential targets for antifouling strategies. In this paper, we present a comprehensive review of peptides derived from barnacles, aiming to underscore their significant potential in the quest for innovative solutions in biofouling prevention and drug discovery. Full article
(This article belongs to the Special Issue Marine Natural Products with Antifouling Activity, 3rd Edition)
Article
Krill Oil’s Protective Benefits against Ultraviolet B-Induced Skin Photoaging in Hairless Mice and In Vitro Experiments
Mar. Drugs 2023, 21(9), 479; https://doi.org/10.3390/md21090479 - 30 Aug 2023
Viewed by 145
Abstract
Krill oil (KO) shows promise as a natural marine-derived ingredient for improving skin health. This study investigated its antioxidant, anti-inflammatory, anti-wrinkle, and moisturizing effects on skin cells and UVB-induced skin photoaging in hairless mice. In vitro assays on HDF, HaCaT, and B16/F10 cells, [...] Read more.
Krill oil (KO) shows promise as a natural marine-derived ingredient for improving skin health. This study investigated its antioxidant, anti-inflammatory, anti-wrinkle, and moisturizing effects on skin cells and UVB-induced skin photoaging in hairless mice. In vitro assays on HDF, HaCaT, and B16/F10 cells, as well as in vivo experiments on 60 hairless mice were conducted. A cell viability assay, diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity test, elastase inhibition assay, procollagen content test, MMP-1 inhibition test, and hyaluronan production assay were used to experiment on in vitro cell models. Mice received oral KO administration (100, 200, or 400 mg/kg) once a day for 15 weeks and UVB radiation three times a week. L-Ascorbic acid (L-AA) was orally administered at 100 mg/kg once daily for 15 weeks, starting from the initial ultraviolet B (UVB) exposures. L-AA administration followed each UVB session (0.18 J/cm2) after one hour. In vitro, KO significantly countered UVB-induced oxidative stress, reduced wrinkles, and prevented skin water loss by enhancing collagen and hyaluronic synthesis. In vivo, all KO dosages showed dose-dependent inhibition of oxidative stress-induced inflammatory photoaging-related skin changes. Skin mRNA expressions for hyaluronan synthesis and collagen synthesis genes also increased dose-dependently after KO treatment. Histopathological analysis confirmed that krill oil (KO) ameliorated the damage caused by UVB-irradiated skin tissues. The results imply that KO could potentially act as a positive measure in diminishing UVB-triggered skin photoaging and address various skin issues like wrinkles and moisturization when taken as a dietary supplement. Full article
(This article belongs to the Special Issue Antiphotoaging and Photoprotective Compounds from Marine Environments)
Show Figures

Figure 1

Article
Bioactivity of Fucoidan-Rich Extracts from Fucus vesiculosus against Rotavirus and Foodborne Pathogens
Mar. Drugs 2023, 21(9), 478; https://doi.org/10.3390/md21090478 - 30 Aug 2023
Viewed by 225
Abstract
Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, [...] Read more.
Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 μg mL−1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions overall exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL−1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Graphical abstract

Article
Kocuria flava, a Bacterial Endophyte of the Marine Macroalga Bryopsis plumosa, Emits 8-Nonenoic Acid Which Inhibits the Aquaculture Pathogen Saprolegnia parasitica
Mar. Drugs 2023, 21(9), 476; https://doi.org/10.3390/md21090476 - 29 Aug 2023
Viewed by 216
Abstract
Secondary metabolites—organic compounds that are often bioactive—produced by endophytes, among others, provide a selective advantage by increasing the organism’s survivability. Secondary metabolites mediate the symbiotic relationship between endophytes and their host, potentially providing the host with tolerance to, and protection against biotic and [...] Read more.
Secondary metabolites—organic compounds that are often bioactive—produced by endophytes, among others, provide a selective advantage by increasing the organism’s survivability. Secondary metabolites mediate the symbiotic relationship between endophytes and their host, potentially providing the host with tolerance to, and protection against biotic and abiotic stressors. Secondary metabolites can be secreted as a dissolved substance or emitted as a volatile. In a previous study, we isolated bioactive endophytes from several macroalgae and tested them in vitro for their ability to inhibit major disease-causing pathogens of aquatic animals in the aquaculture industry. One endophyte (isolate Abp5, K. flava) inhibited and killed, in vitro, the pathogen Saprolegnia parasitica, an oomycete that causes saprolegniasis—a disease affecting a wide range of aquatic animals. Here, using analytical chemistry tools, we found that Abp5 produces the volatile organic compound (VOC) 8-nonenoic acid. Once we confirmed the production of this compound by the endophyte, we tested the compound’s ability to treat S. parasitica in in vitro and in vivo bioassays. In the latter, we found that 5 mg/L of the compound improves the survival of larvae challenged with S. parasitica by 54.5%. Our isolation and characterization of the VOC emitted by the endophytic K. flava establish the groundwork for future studies of endophytic biocontrol agents from macroalgae. Use of this compound could enable managing oomycete agricultural pathogens in general, and S. parasitica in particular, a major causal agent in aquaculture diseases. Full article
Show Figures

Graphical abstract

Article
The Preventive Mechanism of Anserine on Tert-Butyl Hydroperoxide-Induced Liver Injury in L-02 Cells via Regulating the Keap1-Nrf2 and JNK-Caspase-3 Signaling Pathways
Mar. Drugs 2023, 21(9), 477; https://doi.org/10.3390/md21090477 - 29 Aug 2023
Viewed by 191
Abstract
Anserine is a naturally occurring histidine dipeptide with significant antioxidant activities. This study aimed to investigate the preventive mechanism of anserine on tert-butyl hydroperoxide (TBHP)-induced liver damage in a normal human liver cell line (L-02 cells). The L-02 cells were pretreated with anserine [...] Read more.
Anserine is a naturally occurring histidine dipeptide with significant antioxidant activities. This study aimed to investigate the preventive mechanism of anserine on tert-butyl hydroperoxide (TBHP)-induced liver damage in a normal human liver cell line (L-02 cells). The L-02 cells were pretreated with anserine (10, 20, and 40 mmol/L) and then induced with 400 μmol/L of TBHP for 4 h. The results showed that the survival rates of L-02 cells and the contents of GSH were significantly increased with the pretreatment of anserine; the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the extracellular fluid were sharply decreased; and the formation of reactive oxygen species (ROS), nuclear fragmentation, and apoptosis were significantly inhibited. In addition, anserine could bind to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) with a binding force of −7.2 kcal/mol; the protein expressions of nuclear factor-erythroid 2-related factor-2 (Nrf2), quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and Bcl-2 were upregulated by anserine in TBHP-induced L-02 cells, with the downregulation of p-JNK and caspase-3. In conclusion, anserine might alleviated liver injury in L-02 cells via regulating related proteins in the Keap1-Nrf2 and JNK-Caspase-3 signaling pathways. Full article
Show Figures

Graphical abstract

Article
Collagen Hydrolysate from the Scales of Mozambique Tilapia (Oreochromis mossambicus) Improve Hair and Skin Health by Alleviating Oxidative Stress and Inflammation and Promoting Hair Growth and Extracellular Matrix Factors
Mar. Drugs 2023, 21(9), 475; https://doi.org/10.3390/md21090475 - 29 Aug 2023
Viewed by 242
Abstract
Fish-derived collagen hydrolysate (CH) has shown promise in improving hair and skin health. Therefore, this study sought to comprehensively assess the effects of CH extracted from Mozambique tilapia (Oreochromis mossambicus) scales on hair and skin using in vitro and in vivo [...] Read more.
Fish-derived collagen hydrolysate (CH) has shown promise in improving hair and skin health. Therefore, this study sought to comprehensively assess the effects of CH extracted from Mozambique tilapia (Oreochromis mossambicus) scales on hair and skin using in vitro and in vivo models. Human dermal papilla cells (hDPCs) were used for antioxidant and gene expression analyses, while C57BL/6 mice were orally administered CH for six weeks to assess hair growth patterns. The mice were divided into four groups: negative control (NC; distilled water), positive control (PC; 1 mg/kg finasteride), CH500 (500 mg/kg BW CH), and CH1000 (1000 mg/kg BW CH). CH mitigated catalase activity reduction in hDPCs, increased IGF-1 and VEGF levels, and decreased TGF-β1, TNF-α, and IL-1β expression. In vivo, CH treatment improved hair growth index, length, diameter, weight, and density. Scanning electron microscopy revealed reduced hair damage. Moreover, CH up-regulated IGF-1, VEGF, Elastin, and HAS2 mRNA expression while down-regulating TNF-α and IL-1β. CH enhanced hair shine, growth, and skin health while alleviating inflammation. These findings demonstrate the potential of CH in alleviating oxidative stress, promoting hair growth, and enhancing skin health, both in vitro and in vivo. Fish-derived CH offers a cost-effective and bioavailable option for improving hair and skin health. Full article
(This article belongs to the Special Issue Marine Cosmeceuticals)
Show Figures

Graphical abstract

Article
An Investigation of Structure–Activity Relationships and Cell Death Mechanisms of the Marine Alkaloids Discorhabdins in Merkel Cell Carcinoma Cells
Mar. Drugs 2023, 21(9), 474; https://doi.org/10.3390/md21090474 - 29 Aug 2023
Viewed by 207
Abstract
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged [...] Read more.
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged sub-micromolar potency against the MCC cell lines tested and most of the active compounds showed selectivity towards virus-positive MCC cell lines. An investigation of structure–activity relationships resulted in an expanded understanding of the crucial structural features of the discorhabdin scaffold. Mechanistic cell death assays suggested that discorhabdins, unlike many other MCC-active small molecules, do not induce apoptosis, as shown by the lack of caspase activation, annexin V staining, and response to caspase inhibition. Similarly, discorhabdin treatment failed to increase MCC intracellular calcium and ROS levels. In contrast, the rapid loss of cellular reducing potential and mitochondrial membrane potential suggested that discorhabdins induce mitochondrial dysfunction leading to non-apoptotic cell death. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Graphical abstract

Article
Development of a Novel Marine-Derived Tricomposite Biomaterial for Bone Regeneration
Mar. Drugs 2023, 21(9), 473; https://doi.org/10.3390/md21090473 - 28 Aug 2023
Viewed by 260
Abstract
Bone tissue engineering is a promising treatment for bone loss that requires a combination of porous scaffold and osteogenic cells. The aim of this study was to evaluate and develop a tricomposite, biomimetic scaffold consisting of marine-derived biomaterials, namely, chitosan and fucoidan with [...] Read more.
Bone tissue engineering is a promising treatment for bone loss that requires a combination of porous scaffold and osteogenic cells. The aim of this study was to evaluate and develop a tricomposite, biomimetic scaffold consisting of marine-derived biomaterials, namely, chitosan and fucoidan with hydroxyapatite (HA). The effects of chitosan, fucoidan and HA individually and in combination on the proliferation and differentiation of human mesenchymal stem cells (MSCs) were investigated. According to the SEM results, the tricomposite scaffold had a uniform porous structure, which is a key requirement for cell migration, proliferation and vascularisation. The presence of HA and fucoidan in the chitosan tricomposite scaffold was confirmed using FTIR, which showed a slight decrease in porosity and an increase in the density of the tricomposite scaffold compared to other formulations. Fucoidan was found to inhibit cell proliferation at higher concentrations and at earlier time points when applied as a single treatment, but this effect was lost at later time points. Similar results were observed with HA alone. However, both HA and fucoidan increased MSC mineralisation as measured by calcium deposition. Differentiation was significantly enhanced in MSCs cultured on the tricomposite, with increased alkaline phosphatase activity on days 17 and 25. In conclusion, the tricomposite is biocompatible, promotes osteogenesis, and has the structural and compositional properties required of a scaffold for bone tissue engineering. This biomaterial could provide an effective treatment for small bone defects as an alternative to autografts or be the basis for cell attachment and differentiation in ex vivo bone tissue engineering. Full article
(This article belongs to the Special Issue Marine Biomimetics as a Tool for Innovation)
Show Figures

Figure 1

Article
Tuning the Bioactive Properties of Dunaliella salina Water Extracts by Ultrasound-Assisted Extraction
Mar. Drugs 2023, 21(9), 472; https://doi.org/10.3390/md21090472 - 27 Aug 2023
Viewed by 340
Abstract
(1) Background: Microalgae are promising feedstock for obtaining valuable bioactive compounds. To facilitate the release of these important biomolecules from microalgae, effective cell disruption is usually necessary, where the use of ultrasound has achieved considerable popularity as an alternative to conventional methods. (2) [...] Read more.
(1) Background: Microalgae are promising feedstock for obtaining valuable bioactive compounds. To facilitate the release of these important biomolecules from microalgae, effective cell disruption is usually necessary, where the use of ultrasound has achieved considerable popularity as an alternative to conventional methods. (2) Methods: This paper aims to evaluate the use of ultrasound technology in water medium as a green technology to recover high added-value compounds from Dunaliella salina and improve its sensory profile towards a high level of incorporation into novel food products. (3) Results: Among the variables, the solid concentration and extraction time have the most significant impact on the process. For the extraction of protein, or fat, the most influential factor is the extraction time. Total polyphenols are only significantly affected by the extraction time. The antioxidant capacity is strongly affected by the solid to liquid ratio and, to a small extent, by the extraction time. Ultrasound-assisted extraction improves the overall odor/aroma of D. salina with good acceptability by the panelists. (4) Conclusions: The application of ultrasonic-assisted extraction demonstrates a positive overall effect on enhancing the sensory profile, particularly the odor of microalgal biomass, while the bioactive properties are preserved. Notably, the intense sea/fish odors are reduced, while earthy and citrus notes become more prominent, resulting in an improved overall sensory profile score. This is the first time, to our knowledge, that this innovative, green, and efficient technology has been used to upgrade the aroma profile of microalgae. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Graphical abstract

Article
Ultrasound-Based Recovery of Anti-Inflammatory and Antimicrobial Extracts of the Acidophilic Microalga Coccomyxa onubensis
Mar. Drugs 2023, 21(9), 471; https://doi.org/10.3390/md21090471 - 27 Aug 2023
Viewed by 560
Abstract
In the present study, the recovery of valuable molecules of proven anti-inflammatory and antimicrobial activity of the acidophilic microalga Coccomyxa onubensis (C. onubensis) were evaluated using green technologies based on ultrasound-assisted extraction (UAE). Using a factorial design (3 × 2) based [...] Read more.
In the present study, the recovery of valuable molecules of proven anti-inflammatory and antimicrobial activity of the acidophilic microalga Coccomyxa onubensis (C. onubensis) were evaluated using green technologies based on ultrasound-assisted extraction (UAE). Using a factorial design (3 × 2) based on response surface methodology and Pareto charts, two types of ultrasonic equipment (bath and probe) were evaluated to recover valuable compounds, including the major terpenoid of C. onubensis, lutein, and the antimicrobial activity of the microalgal extracts obtained under optimal ultrasound conditions (desirability function) was evaluated versus conventional extraction. Significant differences in lutein recovery were observed between ultrasonic bath and ultrasonic probe and conventional extraction. Furthermore, the antimicrobial activity displayed by C. onubensis UAE-based extracts was greater than that obtained in solvent-based extracts, highlighting the effects of the extracts against pathogens such as Enterococcus hirae and Bacillus subtilis, followed by Staphylococcus aureus and Escherichia coli. In addition, gas chromatography–mass spectrometry was performed to detect valuable anti-inflammatory and antimicrobial biomolecules present in the optimal C. onubensis extracts, which revealed that phytol, sterol-like, terpenoid, and even fatty acid structures could also be responsible for the antibacterial activities of the extracts. Moreover, UAE displayed a positive effect on the recovery of valuable molecules, improving biocidal effects. Our study results facilitate the use of green technology as a good tool in algal bioprocess engineering, improving energy consumption and minimizing environmental impacts and process costs, as well as provide a valuable product for applications in the field of biotechnology. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds against Oxidative Stress and Inflammation)
Show Figures

Graphical abstract

Article
Carotenoids from Starfish Patiria pectinifera: Therapeutic Activity in Models of Inflammatory Diseases
Mar. Drugs 2023, 21(9), 470; https://doi.org/10.3390/md21090470 - 27 Aug 2023
Viewed by 258
Abstract
The carotenoids mixture (MC) isolated from the starfish Patiria. pectinifera contains more than 50% astaxanthin, 4–6% each zeaxanthine and lutein, and less pharmacologically active components such as free fatty acids and their glycerides. Astaxanthin, the major component of MC, belongs to the xanthophyll [...] Read more.
The carotenoids mixture (MC) isolated from the starfish Patiria. pectinifera contains more than 50% astaxanthin, 4–6% each zeaxanthine and lutein, and less pharmacologically active components such as free fatty acids and their glycerides. Astaxanthin, the major component of MC, belongs to the xanthophyll class of carotenoids, and is well known for its antioxidant properties. In this work, in vitro and in vivo studies on the biological activity of MC were carried out. The complex was shown to exhibit anti-inflammatory, anti-allergic and cancer-preventive activity, without any toxicity at a dose of 500 mg/kg. MC effectively improves the clinical picture of the disease progressing, as well as normalizing the cytokine profile and the antioxidant defense system in the in vivo animal models of inflammatory diseases, namely: skin carcinogenesis, allergic contact dermatitis (ACD) and systemic inflammation (SI). In the skin carcinogenesis induced by 7,12-dimethylbenzanthracene, the incidence of papillomas was decreased 1.5 times; 1% MC ointment form in allergic contact dermatitis showed an 80% reduced severity of pathomorphological skin manifestations. Obtained results show that MC from starfish P. pectinifera is an effective remedy for the treatment and prevention of inflammatory processes. Full article
Show Figures

Figure 1

Article
Antioxidant, Collagenase Inhibitory, and Antibacterial Effects of Bioactive Peptides Derived from Enzymatic Hydrolysate of Ulva australis
Mar. Drugs 2023, 21(9), 469; https://doi.org/10.3390/md21090469 - 26 Aug 2023
Viewed by 185
Abstract
The protein extract of Ulva australis hydrolyzed with Alcalase and Flavourzyme was found to have multi-functional properties, including total antioxidant capacity (TAC), collagenase inhibitory, and antibacterial activities. The #5 fraction (SP5) and #7 fraction (SP7) of U. australis hydrolysate from cation-exchange chromatography displayed [...] Read more.
The protein extract of Ulva australis hydrolyzed with Alcalase and Flavourzyme was found to have multi-functional properties, including total antioxidant capacity (TAC), collagenase inhibitory, and antibacterial activities. The #5 fraction (SP5) and #7 fraction (SP7) of U. australis hydrolysate from cation-exchange chromatography displayed significantly high TAC, collagenase inhibitory, and antibacterial effects against Propionibacterium acnes, and only the Q3 fraction from anion-exchange chromatography displayed high multi-functional activities. Eight of 42 peptides identified by MALDI-TOF/MS and Q-TOF/MS/MS were selected from the results for screening with molecular docking on target proteins and were then synthesized. Thr-Gly-Thr-Trp (TGTW) displayed ABTS [2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging activity. The effect of TAC as Trolox equivalence was dependent on the concentration of TGTW. Asn-Arg-Asp-Tyr (NRDY) and Arg-Asp-Arg-Phe (RDRF) exhibited collagenase inhibitory activity, which increased according to the increase in concentration, and their IC50 values were 0.95 mM and 0.84 mM, respectively. Peptides RDRF and His-Ala-Val-Tyr (HAVY) displayed anti-P. Acnes effects, with IC50 values of 8.57 mM and 13.23 mM, respectively. These results suggest that the U. australis hydrolysate could be a resource for the application of effective nutraceuticals and cosmetics. Full article
Show Figures

Graphical abstract

Article
Anti-Hyperlipidemic Effect of Fucoidan Fractions Prepared from Iceland Brown Algae Ascophyllum nodosum in an Hyperlipidemic Mice Model
Mar. Drugs 2023, 21(9), 468; https://doi.org/10.3390/md21090468 - 26 Aug 2023
Viewed by 224
Abstract
Ascophyllum nodosum, a brown algae abundantly found along the North Atlantic coast, is recognized for its high polysaccharide content. In this study, we investigated the anti-hyperlipidemic effect of fucoidans derived from A. nodosum, aiming to provide information for their potential application [...] Read more.
Ascophyllum nodosum, a brown algae abundantly found along the North Atlantic coast, is recognized for its high polysaccharide content. In this study, we investigated the anti-hyperlipidemic effect of fucoidans derived from A. nodosum, aiming to provide information for their potential application in anti-hyperlipidemic therapies and to explore comprehensive utilization of this Iceland brown seaweed. The crude fucoidan prepared from A. nodosum was separated using a diethylethanolamine column, resulting in two fucoidan fractions, AFC-1 and AFC-2. Both fractions were predominantly composed of fucose and xylose. AFC-1 exhibited a higher sulfate content of 27.8% compared to AFC-2 with 17.0%. AFC-2 was primarily sulfated at the hydroxy group of C2, whereas AFC-1 was sulfated at both the hydroxy groups of C2 and C4. To evaluate the anti-hyperlipidemic effect, a hyperlipidemia mouse model was established by feeding mice a high-fat diet. The effects of AFC-1, AFC-2, and the crude extract were investigated, with the drug atorvastatin used as a positive comparison. Among the different fucoidan fractions and doses, the high dose of AFC-2 administration demonstrated the most significant anti-hyperlipidemic effect across various aspects, including physiological parameters, blood glucose levels, lipid profile, histological analysis, and the activities of oxidative stress-related enzymes and lipoprotein-metabolism-related enzymes (p < 0.05 for the final body weight and p < 0.01 for the rest indicators, compared with the model group), and its effect is comparable to the atorvastatin administration. Furthermore, fucoidan administration resulted in a lower degree of loss in gut flora diversity compared to atorvastatin administration. These findings highlight the significant biomedical potential of fucoidans derived from A. nodosum as a promising therapeutic solution for hypolipidemia. Full article
(This article belongs to the Special Issue Biomedical Application of Marine-Derived Carbohydrates)
Show Figures

Figure 1

Article
Ultrasonic-Assisted Extraction of Astaxanthin from Shrimp By-Products Using Vegetable Oils
Mar. Drugs 2023, 21(9), 467; https://doi.org/10.3390/md21090467 - 25 Aug 2023
Viewed by 234
Abstract
Background: The use of conventional astaxanthin extraction methods, typically involving organic solvents, leads to a heightened environmental impact. The aim of this study was to explore the potential use of environmentally friendly extraction solvents, such as vegetable oils, for recovering the shrimp by-product [...] Read more.
Background: The use of conventional astaxanthin extraction methods, typically involving organic solvents, leads to a heightened environmental impact. The aim of this study was to explore the potential use of environmentally friendly extraction solvents, such as vegetable oils, for recovering the shrimp by-product astaxanthin. Methods: Ultrasound-assisted extraction (UAE) in vegetable oils, including olive oil (OO), sunflower oil (SO), and flaxseed oil (FO), was employed to extract astaxanthin. The astaxanthin antioxidant activity was evaluated using an ABTS assay, and a mixture of gum Arabic and soy lecithin was used to form coacervates to produce astaxanthin encapsulation. Results: A by-product–vegetable oil ratio of 1:60, extraction time of 210 min, 60% amplitude of the extraction process, and the use of OO as the extracting medium resulted in an astaxanthin yield of 235 ± 4.07 μg astaxanthin/g by-products. The astaxanthin encapsulation efficiency on day 0 and astaxanthin recovery on day 1 were recorded at 66.6 ± 2.7% and 94.4 ± 4.6%, respectively. Conclusions: The utilization of OO as an extraction solvent for astaxanthin from shrimp by-products in UAE represents a novel and promising approach to reducing the environmental impact of shrimp by-products. The effective astaxanthin encapsulation efficiency highlights its potential application in food industries. Full article
Show Figures

Figure 1

Back to TopTop