Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (329)

Search Parameters:
Journal = JDB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Review
Identifying Molecular Roadblocks for Transcription Factor-Induced Cellular Reprogramming In Vivo by Using C. elegans as a Model Organism
J. Dev. Biol. 2023, 11(3), 37; https://doi.org/10.3390/jdb11030037 - 31 Aug 2023
Viewed by 125
Abstract
Generating specialized cell types via cellular transcription factor (TF)-mediated reprogramming has gained high interest in regenerative medicine due to its therapeutic potential to repair tissues and organs damaged by diseases or trauma. Organ dysfunction or improper tissue functioning might be restored by producing [...] Read more.
Generating specialized cell types via cellular transcription factor (TF)-mediated reprogramming has gained high interest in regenerative medicine due to its therapeutic potential to repair tissues and organs damaged by diseases or trauma. Organ dysfunction or improper tissue functioning might be restored by producing functional cells via direct reprogramming, also known as transdifferentiation. Regeneration by converting the identity of available cells in vivo to the desired cell fate could be a strategy for future cell replacement therapies. However, the generation of specific cell types via reprogramming is often restricted due to cell fate-safeguarding mechanisms that limit or even block the reprogramming of the starting cell type. Nevertheless, efficient reprogramming to generate homogeneous cell populations with the required cell type’s proper molecular and functional identity is critical. Incomplete reprogramming will lack therapeutic potential and can be detrimental as partially reprogrammed cells may acquire undesired properties and develop into tumors. Identifying and evaluating molecular barriers will improve reprogramming efficiency to reliably establish the target cell identity. In this review, we summarize how using the nematode C. elegans as an in vivo model organism identified molecular barriers of TF-mediated reprogramming. Notably, many identified molecular factors have a high degree of conservation and were subsequently shown to block TF-induced reprogramming of mammalian cells. Full article
Show Figures

Figure 1

Review
Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review
J. Dev. Biol. 2023, 11(3), 36; https://doi.org/10.3390/jdb11030036 - 29 Aug 2023
Viewed by 180
Abstract
In vitro maturation (IVM) is one of the most important steps in in vitro embryo production (IVEP). It is a complicated procedure in which nuclear and cytoplasmatic changes in oocytes appear. In order to carry out the in vitro maturation procedure correctly, it [...] Read more.
In vitro maturation (IVM) is one of the most important steps in in vitro embryo production (IVEP). It is a complicated procedure in which nuclear and cytoplasmatic changes in oocytes appear. In order to carry out the in vitro maturation procedure correctly, it is necessary to provide the oocytes with as close to a natural (in vivo) environment as possible. Many factors contribute to the overall poor quality of in vitro-matured oocytes. One important factor may be oxidative stress (OS). The generation of oxidants, such as reactive oxygen species, is common under culture conditions. The solution for OC treatment and prevention is antioxidants. In the last 5 years, many studies have examined different antioxidants and their effects on in vitro maturation of oocytes and embryo production. The aim of this systematic review was to present the achievements of scientific research in the last five years, in which the effects of many antioxidants were tested on bovine oocyte maturation and embryo production. Full article
(This article belongs to the Topic Cell Signaling Pathways)
Article
Immunolocalization of Some Epidermal Proteins and Glycoproteins in the Growing Skin of the Australian Lungfish (Neoceratodus forsteri)
J. Dev. Biol. 2023, 11(3), 35; https://doi.org/10.3390/jdb11030035 - 14 Aug 2023
Viewed by 255
Abstract
Here we report the immunolocalization of mucin, nestin, elastin and three glycoproteins involved in tissue mineralization in small and large juveniles of Neoceratodus forsteri. Both small and larger juvenile epidermis are mucogenic and contain a diffuse immunolabeling for nestin. Sparse PCNA-labeled cells, [...] Read more.
Here we report the immunolocalization of mucin, nestin, elastin and three glycoproteins involved in tissue mineralization in small and large juveniles of Neoceratodus forsteri. Both small and larger juvenile epidermis are mucogenic and contain a diffuse immunolabeling for nestin. Sparse PCNA-labeled cells, indicating proliferation, are found in basal and suprabasal epidermal layers. No scales are formed in small juveniles but are present in a 5 cm long juvenile and in larger juveniles. Elastin and a mineralizing matrix are localized underneath the basement membrane of the tail epidermis where lepidotriches are forming. The latter appears as “circular bodies” in cross sections and are made of elongated cells surrounding a central amorphous area containing collagen and elastin-like proteins that undergo calcification as evidenced using the von Kossa staining. However, the first calcification sites are the coniform teeth of the small juveniles of 2–3 cm in length. In the superficial dermis of juveniles (16–26 cm in length) where scales are formed, the spinulated outer bony layer (squamulin) of the elasmoid scales contains osteonectin, alkaline phosphatase, osteopontin, and calcium deposits that are instead absent in the underlying layer of elasmodin. In particular, these glycoproteins are localized along the scale margin in juveniles where scales grow, as indicated by the presence of PCNA-labeled cells (proliferating). These observations suggest a continuous deposition of new bone during the growth of the scales, possibly under the action of these mineralizing glycoproteins, like in the endoskeleton of terrestrial vertebrates. Full article
(This article belongs to the Special Issue Development of the Skin in Vertebrates)
Show Figures

Figure 1

Article
Vasa, Piwi, and Pl10 Expression during Sexual Maturation and Asexual Reproduction in the Annelid Pristina longiseta
J. Dev. Biol. 2023, 11(3), 34; https://doi.org/10.3390/jdb11030034 - 09 Aug 2023
Viewed by 419
Abstract
Naidids are tiny, transparent freshwater oligochaetes, which are well known for their ability to propagate asexually. Despite the fact that sexually mature individuals and cocoons with embryos are sometimes found in nature, in long-period laboratory cultures, worms reproduce agametically only. In this paper, [...] Read more.
Naidids are tiny, transparent freshwater oligochaetes, which are well known for their ability to propagate asexually. Despite the fact that sexually mature individuals and cocoons with embryos are sometimes found in nature, in long-period laboratory cultures, worms reproduce agametically only. In this paper, we showed, for the first time, the expression of Vasa, Piwi, and Pl10 homologs in mature Pristina longiseta worms with well-developed reproductive system structures and germ cells. Although the animals have been propagated asexually by paratomic fission for over 20 years in our lab, some individuals become sexualized under standard conditions for our laboratory culture and demonstrate various stages of maturation. The fully matured animals developed a complete set of sexual apparatus including spermatheca, atrium, seminal vesicles, and ovisac. They also had a clitellum and were able to form cocoons. The cues for the initiation of sexual maturation are still unknown for P. longiseta; nevertheless, our data suggest that the laboratory strain of P. longiseta maintains the ability to become fully sexually mature and to establish germline products even after a long period of agametic reproduction. On the other hand, many of the sexualized worms formed a fission zone and continued to reproduce asexually. Thus, in this species, the processes of asexual reproduction and sexual maturation do not preclude each other, and Vasa, Piwi, and Pl10 homologs are expressed in both somatic and germline tissue including the posterior growth zone, fission zone, nervous system, germline cells, and gametes. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

Article
Decreased Expression of Pulmonary Homeobox NKX2.1 and Surfactant Protein C in Developing Lungs That Over-Express Receptors for Advanced Glycation End-Products (RAGE)
J. Dev. Biol. 2023, 11(3), 33; https://doi.org/10.3390/jdb11030033 - 15 Jul 2023
Viewed by 409
Abstract
Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors of the immunoglobin superfamily prominently expressed by lung epithelium. Previous experiments demonstrated that over-expression of RAGE by murine alveolar epithelium throughout embryonic development causes neonatal lethality coincident with significant lung hypoplasia. In [...] Read more.
Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors of the immunoglobin superfamily prominently expressed by lung epithelium. Previous experiments demonstrated that over-expression of RAGE by murine alveolar epithelium throughout embryonic development causes neonatal lethality coincident with significant lung hypoplasia. In the current study, we evaluated the expression of NKX2.1 (also referred to as TTF-1), a homeodomain-containing transcription factor critical for branching morphogenesis, in mice that differentially expressed RAGE. We also contextualized NKX2.1 expression with the abundance of FoxA2, a winged double helix DNA binding protein that influences respiratory epithelial cell differentiation and surfactant protein expression. Conditional RAGE over-expression was induced in mouse lung throughout gestation (embryonic day E0–18.5), as well as during the critical saccular period of development (E15.5–18.5), and analyses were conducted at E18.5. Histology revealed markedly less lung parenchyma beginning in the canalicular stage of lung development and continuing throughout the saccular period. We discovered consistently decreased expression of both NKX2.1 and FoxA2 in lungs from transgenic (TG) mice compared to littermate controls. We also observed diminished surfactant protein C in TG mice, suggesting possible hindered differentiation and/or proliferation of alveolar epithelial cells under the genetic control of these two critical transcription factors. These results demonstrate that RAGE must be specifically regulated during lung formation. Perturbation of epithelial cell differentiation culminating in respiratory distress and perinatal lethality may coincide with elevated RAGE expression in the lung parenchyma. Full article
Show Figures

Figure 1

Review
Evolutionary Change in Gut Specification in Caenorhabditis Centers on the GATA Factor ELT-3 in an Example of Developmental System Drift
J. Dev. Biol. 2023, 11(3), 32; https://doi.org/10.3390/jdb11030032 - 08 Jul 2023
Viewed by 430
Abstract
Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal [...] Read more.
Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to C. elegans, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in C. elegans, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in C. elegans and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

Brief Report
Patterning of the Vertebrate Head in Time and Space by BMP Signaling
J. Dev. Biol. 2023, 11(3), 31; https://doi.org/10.3390/jdb11030031 - 03 Jul 2023
Viewed by 501
Abstract
How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was [...] Read more.
How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was applied to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland, which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker) were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to posterior in a progressive fashion and may involve timed actions of the BMP signaling. Full article
(This article belongs to the Special Issue 2022 Feature Papers by JDB’s Editorial Board Members)
Show Figures

Figure 1

Article
Molecular and Cellular Characterization of Avian Reticulate Scales Implies the Evo–Devo Novelty of Skin Appendages in Foot Sole
J. Dev. Biol. 2023, 11(3), 30; https://doi.org/10.3390/jdb11030030 - 03 Jul 2023
Viewed by 579
Abstract
Among amniotic skin appendages, avian feathers and mammalian hairs protect their stem cells in specialized niches, located in the collar bulge and hair bulge, respectively. In chickens and alligators, label retaining cells (LRCs), which are putative stem cells, are distributed in the hinge [...] Read more.
Among amniotic skin appendages, avian feathers and mammalian hairs protect their stem cells in specialized niches, located in the collar bulge and hair bulge, respectively. In chickens and alligators, label retaining cells (LRCs), which are putative stem cells, are distributed in the hinge regions of both avian scutate scales and reptilian overlapping scales. These LRCs take part in scale regeneration. However, it is unknown whether other types of scales, for example, symmetrically shaped reticulate scales, have a similar way of preserving their stem cells. In particular, the foot sole represents a special interface between animal feet and external environments, with heavy mechanical loading. This is different from scutate-scale-covered metatarsal feet that function as protection. Avian reticulate scales on foot soles display specialized characteristics in development. They do not have a placode stage and lack β-keratin expression. Here, we explore the molecular and cellular characteristics of avian reticulate scales. RNAscope analysis reveals different molecular profiles during surface and hinge determination compared with scutate scales. Furthermore, reticulate scales express Keratin 15 (K15) sporadically in both surface- and hinge-region basal layer cells, and LRCs are not localized. Upon wounding, the reticulate scale region undergoes repair but does not regenerate. Our results suggest that successful skin appendage regeneration requires localized stem cell niches to guide regeneration. Full article
(This article belongs to the Special Issue Development of the Skin in Vertebrates)
Show Figures

Figure 1

Article
The Tumor Suppressor Adenomatous Polyposis Coli (apc) Is Required for Neural Crest-Dependent Craniofacial Development in Zebrafish
J. Dev. Biol. 2023, 11(3), 29; https://doi.org/10.3390/jdb11030029 - 29 Jun 2023
Viewed by 536
Abstract
Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC [...] Read more.
Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor Adenomatous Polyposis Coli (apc) disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, apcmcr/mcr larvae express substantially higher levels of complement c3, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in stroma-derived factor 1 (sdf1/cxcl12), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in apc mutant zebrafish, including a splice variant that deletes a conserved domain in semaphorin 3f (sema3f), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for apc in CNC development in the context of some of the seminal findings of Mayor and colleagues. Full article
Show Figures

Graphical abstract

Article
Regionalized Protein Localization Domains in the Zebrafish Hair Cell Kinocilium
J. Dev. Biol. 2023, 11(2), 28; https://doi.org/10.3390/jdb11020028 - 16 Jun 2023
Viewed by 837
Abstract
Sensory hair cells are the receptors for auditory, vestibular, and lateral line sensory organs in vertebrates. These cells are distinguished by “hair”-like projections from their apical surface collectively known as the hair bundle. Along with the staircase arrangement of the actin-filled stereocilia, the [...] Read more.
Sensory hair cells are the receptors for auditory, vestibular, and lateral line sensory organs in vertebrates. These cells are distinguished by “hair”-like projections from their apical surface collectively known as the hair bundle. Along with the staircase arrangement of the actin-filled stereocilia, the hair bundle features a single, non-motile, true cilium called the kinocilium. The kinocilium plays an important role in bundle development and the mechanics of sensory detection. To understand more about kinocilial development and structure, we performed a transcriptomic analysis of zebrafish hair cells to identify cilia-associated genes that have yet to be characterized in hair cells. In this study, we focused on three such genes—ankef1a, odf3l2a, and saxo2—because human or mouse orthologs are either associated with sensorineural hearing loss or are located near uncharacterized deafness loci. We made transgenic fish that express fluorescently tagged versions of their proteins, demonstrating their localization to the kinocilia of zebrafish hair cells. Furthermore, we found that Ankef1a, Odf3l2a, and Saxo2 exhibit distinct localization patterns along the length of the kinocilium and within the cell body. Lastly, we have reported a novel overexpression phenotype of Saxo2. Overall, these results suggest that the hair cell kinocilium in zebrafish is regionalized along its proximal-distal axis and set the groundwork to understand more about the roles of these kinocilial proteins in hair cells. Full article
(This article belongs to the Special Issue Zebrafish—a Model System for Developmental Biology II)
Show Figures

Figure 1

Review
The Lost and Found: Unraveling the Functions of Orphan Genes
J. Dev. Biol. 2023, 11(2), 27; https://doi.org/10.3390/jdb11020027 - 13 Jun 2023
Viewed by 1687
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The [...] Read more.
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes. Full article
(This article belongs to the Special Issue 2022 Feature Papers by JDB’s Editorial Board Members)
Show Figures

Graphical abstract

Review
An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease
J. Dev. Biol. 2023, 11(2), 26; https://doi.org/10.3390/jdb11020026 - 06 Jun 2023
Viewed by 1396
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug [...] Read more.
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease. Full article
Show Figures

Figure 1

Review
Evo Devo of the Vertebrates Integument
J. Dev. Biol. 2023, 11(2), 25; https://doi.org/10.3390/jdb11020025 - 05 Jun 2023
Viewed by 944
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and [...] Read more.
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal–epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya. Full article
(This article belongs to the Special Issue Development of the Skin in Vertebrates)
Show Figures

Figure 1

Article
Jak2 and Jaw Muscles Are Required for Buccopharyngeal Membrane Perforation during Mouth Development
J. Dev. Biol. 2023, 11(2), 24; https://doi.org/10.3390/jdb11020024 - 31 May 2023
Viewed by 798
Abstract
The mouth is a central feature of our face, without which we could not eat, breathe, or communicate. A critical and early event in mouth formation is the creation of a “hole” which connects the digestive system and the external environment. This hole, [...] Read more.
The mouth is a central feature of our face, without which we could not eat, breathe, or communicate. A critical and early event in mouth formation is the creation of a “hole” which connects the digestive system and the external environment. This hole, which has also been called the primary or embryonic mouth in vertebrates, is initially covered by a 1–2 cell layer thick structure called the buccopharyngeal membrane. When the buccopharyngeal membrane does not rupture, it impairs early mouth functions and may also lead to further craniofacial malformations. Using a chemical screen in an animal model (Xenopus laevis) and genetic data from humans, we determined that Janus kinase 2 (Jak2) has a role in buccopharyngeal membrane rupture. We have determined that decreased Jak2 function, using antisense morpholinos or a pharmacological antagonist, caused a persistent buccopharyngeal membrane as well as the loss of jaw muscles. Surprisingly, we observed that the jaw muscle compartments were connected to the oral epithelium that is continuous with the buccopharyngeal membrane. Severing such connections resulted in buccopharyngeal membrane buckling and persistence. We also noted puncta accumulation of F-actin, an indicator of tension, in the buccopharyngeal membrane during perforation. Taken together, the data has led us to a hypothesis that muscles are required to exert tension across the buccopharyngeal membrane, and such tension is necessary for its perforation. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Graphical abstract

Article
Transcription of HOX Genes Is Significantly Increased during Neuronal Differentiation of iPSCs Derived from Patients with Parkinson’s Disease
J. Dev. Biol. 2023, 11(2), 23; https://doi.org/10.3390/jdb11020023 - 25 May 2023
Viewed by 860
Abstract
Parkinson’s disease (PD) is the most serious movement disorder, but the actual cause of this disease is still unknown. Induced pluripotent stem cell-derived neural cultures from PD patients carry the potential for experimental modeling of underlying molecular events. We analyzed the RNA-seq data [...] Read more.
Parkinson’s disease (PD) is the most serious movement disorder, but the actual cause of this disease is still unknown. Induced pluripotent stem cell-derived neural cultures from PD patients carry the potential for experimental modeling of underlying molecular events. We analyzed the RNA-seq data of iPSC-derived neural precursor cells (NPCs) and terminally differentiated neurons (TDNs) from healthy donors (HD) and PD patients with mutations in PARK2 published previously. The high level of transcription of HOX family protein-coding genes and lncRNA transcribed from the HOX clusters was revealed in the neural cultures from PD patients, while in HD NPCs and TDNs, the majority of these genes were not expressed or slightly transcribed. The results of this analysis were generally confirmed by qPCR. The HOX paralogs in the 3′ clusters were activated more strongly than the genes of the 5′ cluster. The abnormal activation of the HOX gene program upon neuronal differentiation in the cells of PD patients raises the possibility that the abnormal expression of these key regulators of neuronal development impacts PD pathology. Further research is needed to investigate this hypothesis. Full article
(This article belongs to the Special Issue 2022 Feature Papers by JDB’s Editorial Board Members)
Show Figures

Figure 1

Back to TopTop