Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (897)

Search Parameters:
Journal = Galaxies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Test Particles and Quasiperiodic Oscillations around Gravitational Aether Black Holes
Galaxies 2023, 11(5), 95; https://doi.org/10.3390/galaxies11050095 (registering DOI) - 01 Sep 2023
Abstract
This paper is devoted to the analysis of the dynamics of test particles in the vicinity of a black hole within the framework of a gravitational aether model. First, we explored the structure of spacetime by analyzing the curvature scalars. Then, we studied [...] Read more.
This paper is devoted to the analysis of the dynamics of test particles in the vicinity of a black hole within the framework of a gravitational aether model. First, we explored the structure of spacetime by analyzing the curvature scalars. Then, we studied particle dynamics around a black hole using the Hamilton–Jacobi equation.The influence of the aether on the effective potential of the radial motion of test particles around the black hole has been investigated. The dependence of the innermost stable circular orbits (ISCO) on the aether parameter has also been investigated. We also considered particle collision near the black hole in the presence of aether, and studied the fundamental frequencies of the orbital motion of the test particles around the black hole in the presence of aether. Further, we applied the obtained results to the analysis of the upper and lower frequencies of twin-peaked quasiperiodic oscillations (QPOs) occurring near black holes. Finally, we use theoretical and numerical results to obtain constraints on model parameters using observation data in QPO. Full article
Show Figures

Figure 1

Review
The Structure and Evolution of Stars: Introductory Remarks
Galaxies 2023, 11(5), 94; https://doi.org/10.3390/galaxies11050094 - 31 Aug 2023
Viewed by 102
Abstract
In this introductory chapter of the Special Issue entitled ‘The Structure and Evolution of Stars’, we highlight the recent major progress made in our understanding of the physics that governs stellar interiors. In so doing, we combine insight from observations, 1D evolutionary modelling [...] Read more.
In this introductory chapter of the Special Issue entitled ‘The Structure and Evolution of Stars’, we highlight the recent major progress made in our understanding of the physics that governs stellar interiors. In so doing, we combine insight from observations, 1D evolutionary modelling and 2D + 3D rotating (magneto)hydrodynamical simulations. Therefore, a complete and compelling picture of the necessary ingredients in state-of-the-art stellar structure theory and areas in which improvements still need to be made are contextualised. Additionally, the over-arching perspective linking all the themes of subsequent chapters is presented. Full article
(This article belongs to the Special Issue The Structure and Evolution of Stars)
Article
Unveiling the Evolutionary State of Three B Supergiant Stars: PU Gem, ϵ CMa, and η CMa
Galaxies 2023, 11(5), 93; https://doi.org/10.3390/galaxies11050093 - 29 Aug 2023
Viewed by 101
Abstract
We aim to combine asteroseismology, spectroscopy, and evolutionary models to establish a comprehensive picture of the evolution of Galactic blue supergiant stars (BSG). To start such an investigation, we selected three BSG candidates for our analysis: HD 42087 (PU Gem), HD 52089 ( [...] Read more.
We aim to combine asteroseismology, spectroscopy, and evolutionary models to establish a comprehensive picture of the evolution of Galactic blue supergiant stars (BSG). To start such an investigation, we selected three BSG candidates for our analysis: HD 42087 (PU Gem), HD 52089 (ϵ CMa), and HD 58350 (η CMa). These stars show pulsations and were suspected to be in an evolutionary stage either preceding or succeding the red supergiant (RSG) stage. For our analysis, we utilized the 2-min cadence TESS data to study the photometric variability, and we obtained new spectroscopic observations at the CASLEO observatory. We used non-LTE radiative transfer models calculated with CMFGEN to derive their stellar and wind parameters. For the fitting procedure, we included CMFGEN models in the iterative spectral analysis pipeline XTgrid to determine their CNO abundances. The spectral modeling was limited to changing only the effective temperature, surface gravity, CNO abundances, and mass-loss rates. Finally, we compared the derived metal abundances with prediction from Geneva stellar evolution models. The frequency spectra of all three stars show stochastic oscillations and indications of one nonradial strange mode, fr= 0.09321 d1 in HD 42087 and a rotational splitting centred in f2= 0.36366 d1 in HD 52089. We conclude that the rather short sectoral observing windows of TESS prevent establishing a reliable mode identification of low frequencies connected to mass-loss variabilities. The spectral analysis confirmed gradual changes in the mass-loss rates, and the derived CNO abundances comply with the values reported in the literature. We were able to achieve a quantitative match with stellar evolution models for the stellar masses and luminosities. However, the spectroscopic surface abundances turned out to be inconsistent with the theoretical predictions. The stars show N enrichment, typical for CNO cycle processed material, but the abundance ratios did not reflect the associated levels of C and O depletion. We found HD 42087 to be the most consistent with a pre-RSG evolutionary stage, HD 58350 is most likely in a post-RSG evolution and HD 52089 shows stellar parameters compatible with a star at the TAMS. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

Editorial
From Vision to Instrument: Creating a Next-Generation Event Horizon Telescope for a New Era of Black Hole Science
Galaxies 2023, 11(5), 92; https://doi.org/10.3390/galaxies11050092 - 22 Aug 2023
Viewed by 172
Abstract
In April 2019, the Event Horizon Telescope (EHT) Collaboration successfully imaged a supermassive black hole (SMBH) for the first time, revealing the apparent “shadow” cast by the dark compact object M87* in the center of the elliptical galaxy Virgo A [...] [...] Read more.
In April 2019, the Event Horizon Telescope (EHT) Collaboration successfully imaged a supermassive black hole (SMBH) for the first time, revealing the apparent “shadow” cast by the dark compact object M87* in the center of the elliptical galaxy Virgo A [...] Full article
Show Figures

Figure 1

Review
Gamma Ray Pulsars and Opportunities for the MACE Telescope
Galaxies 2023, 11(4), 91; https://doi.org/10.3390/galaxies11040091 - 17 Aug 2023
Viewed by 222
Abstract
Rapidly rotating neutron stars with very strong surface magnetic fields are observed to emit pulsed emission in the whole range of electromagnetic spectrum from radio to high-energy gamma rays. These so-called pulsars are known for their exceptional rotational stability. The radio emission from [...] Read more.
Rapidly rotating neutron stars with very strong surface magnetic fields are observed to emit pulsed emission in the whole range of electromagnetic spectrum from radio to high-energy gamma rays. These so-called pulsars are known for their exceptional rotational stability. The radio emission from pulsars is generally believed to be powered by the rotational energy of neutron stars. More than 3000 pulsars have been currently known from radio observations; however, only about 10% are observed in the high-energy gamma ray band. The Fermi-LAT observations in the energy range above 100 MeV have discovered more than 300 pulsars. However, the origin of high-energy non-thermal radiation from pulsars is not completely understood and remains an active area of research. In this contribution, we report a summary of observational features of the gamma ray pulsars and briefly discuss observability for the MACE gamma ray telescope, which has just started its regular science operation at Hanle in India. Six gamma ray pulsars, other than the well-known Crab and Geminga, are identified as probable candidates for MACE observations. Full article
(This article belongs to the Special Issue The 10th Anniversary of Galaxies: The Astrophysics of Neutron Stars)
Show Figures

Figure 1

Article
Infrared Spectroscopy of Be Stars: Influence of the Envelope Parameters on Brackett-Series Behaviour
Galaxies 2023, 11(4), 90; https://doi.org/10.3390/galaxies11040090 - 17 Aug 2023
Viewed by 262
Abstract
The IR spectra of Be stars display numerous hydrogen recombination lines, constituting a great resource for obtaining information on the physical and dynamic structures of different regions within the circumstellar envelope. Nevertheless, this spectral region has not been analysed in depth, and there [...] Read more.
The IR spectra of Be stars display numerous hydrogen recombination lines, constituting a great resource for obtaining information on the physical and dynamic structures of different regions within the circumstellar envelope. Nevertheless, this spectral region has not been analysed in depth, and there is a lack of synthetic spectra with which to compare observations. Therefore, we computed synthetic spectra with the HDUST code for different disc parameters. Here, we present our results on the spectral region that includes lines of the Brackett series. We discuss the dependence of the line series strengths on several parameters that describe the structure of the disc. We also compared model line profiles, fluxes, and EWs with observational data for two Be stars (MX Pup and π Aqr). Even though the synthetic spectra adequately fit our observations of both stars and allow us to constrain the parameters of the disc, there is a discrepancy with the observed data in the EW and flux measurements, especially in the case of MX Pup. It is possible that by including Brackett lines of higher terms or adding the analysis of other series, we may be able to better constrain the parameters of the observed disc. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

Review
Multidimensional Simulations of Core Convection
Galaxies 2023, 11(4), 89; https://doi.org/10.3390/galaxies11040089 - 31 Jul 2023
Cited by 1 | Viewed by 323
Abstract
The cores of main sequence intermediate- and high-mass stars are convective. Mixing at the radiative–convective boundary, waves excited by the convection, and magnetic fields generated by convective dynamos all influence the main sequence and post-main sequence evolution of these stars. These effects must [...] Read more.
The cores of main sequence intermediate- and high-mass stars are convective. Mixing at the radiative–convective boundary, waves excited by the convection, and magnetic fields generated by convective dynamos all influence the main sequence and post-main sequence evolution of these stars. These effects must be understood to accurately model the structure and evolution of intermediate- and high-mass stars. Unfortunately, there are many challenges in simulating core convection due to the wide range of temporal and spatial scales, as well as many important physics effects. In this review, we describe the latest numerical strategies to address these challenges. We then describe the latest state-of-the-art simulations of core convection, summarizing their main findings. These simulations have led to important insights into many of the processes associated with core convection. Two outstanding problems with multidimensional simulations are, 1. it is not always straightforward to extrapolate from simulation parameters to the parameters of real stars; and 2. simulations using different methods sometimes appear to arrive at contradictory results. To address these issues, next generation simulations of core convection must address how their results depend on stellar luminosity, dimensionality, and turbulence intensity. Furthermore, code comparison projects will be essential to establish robust parameterizations that will become the new standard in stellar modeling. Full article
(This article belongs to the Special Issue The Structure and Evolution of Stars)
Show Figures

Figure 1

Article
Searching for Short-Timescale Transients in Gamma-ray Telescope Data
Galaxies 2023, 11(4), 88; https://doi.org/10.3390/galaxies11040088 - 24 Jul 2023
Viewed by 307
Abstract
Astrophysical sources show variability in their emissions over a range of timescales, with transients such as fast radio bursts (FRBs) and magnetar giant flares (MGFs) showing variability on timescales as short as a few milliseconds. Recent advances in gamma-ray astronomy such as telescopes’ [...] Read more.
Astrophysical sources show variability in their emissions over a range of timescales, with transients such as fast radio bursts (FRBs) and magnetar giant flares (MGFs) showing variability on timescales as short as a few milliseconds. Recent advances in gamma-ray astronomy such as telescopes’ high temporal resolution and relatively high uptime, combined with follow-up programs between different facilities, should allow serendipitous observations of burst-like phenomena. Even so, no very-high-energy gamma-ray counterparts for FRBs have been detected so far, and there is a general lack of software tools suited to search for such phenomena. We present a tool capable of searching gamma-ray telescope data for transient phenomena over arbitrary timescales—it is based on the Gammapy package and recursively scans the given field of view for clusters of events within user-defined time and angular-separation intervals. The generalized implementation allows for its application in many other cases and multiple gamma-ray telescopes. The main features and methodology of the developed tool are presented here, along with an analysis of the open gamma ray telescope data performed using it. Full article
Show Figures

Figure 1

Review
Dynamics of Powerful Radio Galaxies
Galaxies 2023, 11(4), 87; https://doi.org/10.3390/galaxies11040087 - 19 Jul 2023
Viewed by 330
Abstract
Analytical models describing the dynamics of lobed radio sources are essential for interpretation of the tens of millions of radio sources that will be observed by the Square Kilometre Array and pathfinder instruments. We propose that historical models can be grouped into two [...] Read more.
Analytical models describing the dynamics of lobed radio sources are essential for interpretation of the tens of millions of radio sources that will be observed by the Square Kilometre Array and pathfinder instruments. We propose that historical models can be grouped into two classes in which the forward expansion of the radio source is driven by either the jet momentum flux or lobe internal pressure. The most recent generation of analytical models combines these limiting cases for a more comprehensive description. We extend the mathematical formalism of historical models to describe source expansion in non-uniform environments, and directly compare different model classes with each other and with hydrodynamic numerical simulations. We quantify differences in predicted observable characteristics for lobed radio sources due to the different model assumptions for their dynamics. We have made our code for the historical models analysed in this review openly available to the community. Full article
(This article belongs to the Special Issue New Perspectives on Radio Galaxy Dynamics)
Show Figures

Figure 1

Review
Cosmic Ray Processes in Galactic Ecosystems
Galaxies 2023, 11(4), 86; https://doi.org/10.3390/galaxies11040086 - 16 Jul 2023
Viewed by 677
Abstract
Galaxy evolution is an important topic, and our physical understanding must be complete to establish a correct picture. This includes a thorough treatment of feedback. The effects of thermal–mechanical and radiative feedback have been widely considered; however, cosmic rays (CRs) are also powerful [...] Read more.
Galaxy evolution is an important topic, and our physical understanding must be complete to establish a correct picture. This includes a thorough treatment of feedback. The effects of thermal–mechanical and radiative feedback have been widely considered; however, cosmic rays (CRs) are also powerful energy carriers in galactic ecosystems. Resolving the capability of CRs to operate as a feedback agent is therefore essential to advance our understanding of the processes regulating galaxies. The effects of CRs are yet to be fully understood, and their complex multi-channel feedback mechanisms operating across the hierarchy of galaxy structures pose a significant technical challenge. This review examines the role of CRs in galaxies, from the scale of molecular clouds to the circumgalactic medium. An overview of their interaction processes, their implications for galaxy evolution, and their observable signatures is provided and their capability to modify the thermal and hydrodynamic configuration of galactic ecosystems is discussed. We present recent advancements in our understanding of CR processes and interpretation of their signatures, and highlight where technical challenges and unresolved questions persist. We discuss how these may be addressed with upcoming opportunities. Full article
Show Figures

Figure 1

Review
What Drives the Ionized Gas Outflows in Radio-Quiet AGN?
Galaxies 2023, 11(4), 85; https://doi.org/10.3390/galaxies11040085 - 12 Jul 2023
Viewed by 481
Abstract
We review the mechanisms driving the ionized gas outflows in radio-quiet (RQ) AGN. Although it constitutes ∼90% of the AGN population, what drives these outflows in these AGNs remains an open question. High-resolution imaging and integral field unit (IFU) observation is key to [...] Read more.
We review the mechanisms driving the ionized gas outflows in radio-quiet (RQ) AGN. Although it constitutes ∼90% of the AGN population, what drives these outflows in these AGNs remains an open question. High-resolution imaging and integral field unit (IFU) observation is key to spatially resolving these outflows, whereas radio observations are important to comprehend the underlying radiative processes. Radio interferometric observations have detected linear, collimated structures on the hundreds of pc scale in RQ AGN, which may be very similar to the extended radio jets in powerful galaxies. Proper motions measured in some objects are sub-relativistic. Other processes, such as synchrotron radiation from shock-accelerated gas around the outflows could give rise to radio emissions as well. Near the launching region, these outflows may be driven by the thermal energy of the accretion disk and exhibit free–free emission. IFU observations on the other hand have detected evidence of both winds and jets and the outflows driven by them in radio-quiet AGN. Some examples include nearby AGN such as Mrk 1044 and HE 1353-1917. An IFU study of nearby (z <0.06) RQ AGN has found that these outflows may be related to their radio properties on <100 pc scale, rather than their accretion properties. Recent JWST observations of RQ AGN XID 2028 have revealed that radio jets and wind could inflate bubbles, create cavities, and trigger star formation. Future high-resolution multi-wavelength observations and numerical simulations taking account of both jets and winds are hence essential to understand the complex interaction between radio-quiet AGN and the host from sub-pc to kpc scales. Full article
(This article belongs to the Special Issue The Symbiosis between Radio Source and Galaxy Evolution)
Show Figures

Figure 1

Communication
Probing Neutrino Production in Blazars by Millimeter VLBI
Galaxies 2023, 11(4), 84; https://doi.org/10.3390/galaxies11040084 - 10 Jul 2023
Cited by 1 | Viewed by 339
Abstract
The advancement of neutrino observatories has sparked a surge in multi-messenger astronomy. Multiple neutrino associations among blazars are reported while neutrino production sites are located within their central (sub)parsecs. Yet, many questions remain on the nature of those processes. The next generation Event [...] Read more.
The advancement of neutrino observatories has sparked a surge in multi-messenger astronomy. Multiple neutrino associations among blazars are reported while neutrino production sites are located within their central (sub)parsecs. Yet, many questions remain on the nature of those processes. The next generation Event Horizon Telescope (ngEHT) is uniquely positioned for these studies, as its high frequency and resolution can probe both the accretion disk region and the parsec-scale jet. This opens up new opportunities for connecting the two regions and unraveling the proton acceleration and neutrino production in blazars. We outline observational strategies for ngEHT and highlight what it can contribute to the multi-messenger study of blazars. Full article
Show Figures

Figure 1

Article
Searching for Phase-Locked Variations of the Emission-Line Profiles in Binary Be Stars
Galaxies 2023, 11(4), 83; https://doi.org/10.3390/galaxies11040083 - 04 Jul 2023
Viewed by 710
Abstract
There is growing evidence that many Be stars are parts of binary systems. As the B-type primaries are very fast rotators and their spectral lines may be distorted by the circumstellar material, it is not easy to measure their radial velocity directly from [...] Read more.
There is growing evidence that many Be stars are parts of binary systems. As the B-type primaries are very fast rotators and their spectral lines may be distorted by the circumstellar material, it is not easy to measure their radial velocity directly from the spectral lines. It has been shown that some Be binaries exhibit peak intensity variations consisting of double-peaked Hα lines that are phase-locked with orbital periods. We searched for such variations in the spectra of 12 Be stars, including several known and suspected binaries. Our results include confirmation of the orbital periods in ν Geminorum, ϵ Capricorni, κ Draconis, 60 Cygni, and V2119 Cygni, its refinement in o Puppis, as well as suggesting hints for binarity in o Aquarii, BK Camelopardalis, and 10 Cassiopeae. Monitoring of the Hα line profile variations in β Canis Minoris for over the last 10 years gives further support to the existence of a 182.5-day period found earlier in a smaller set of data. A similar but still preliminary period (179.6 days) was found in the Hα line profile variations in ψ Persei. It is shown for the first time that ν Geminorum exhibits phase-locked variations in the Hα emission peak intensity ratio and, therefore, is a part of the inner binary in this triple system. Our results show that the mentioned phase-locked peak intensity variations are observed in more Be binary systems than previously known and can be used to search for binarity of Be stars when application of other methods is inconclusive. Full article
Show Figures

Figure 1

Article
Observational Implications of OJ 287’s Predicted 2022 Disk Impact in the Black Hole Binary Model
Galaxies 2023, 11(4), 82; https://doi.org/10.3390/galaxies11040082 - 03 Jul 2023
Viewed by 328
Abstract
We present a summary of the results of the OJ 287 observational campaign, which was carried out during the 2021/2022 observational season. This season is special in the binary model because the major axis of the precessing binary happens to lie almost exactly [...] Read more.
We present a summary of the results of the OJ 287 observational campaign, which was carried out during the 2021/2022 observational season. This season is special in the binary model because the major axis of the precessing binary happens to lie almost exactly in the plane of the accretion disc of the primary. This leads to pairs of almost identical impacts between the secondary black hole and the accretion disk in 2005 and 2022. In 2005, a special flare called “blue flash” was observed 35 days after the disk impact, which should have also been verifiable in 2022. We did observe a similar flash and were able to obtain more details of its properties. We describe this in the framework of expanding cloud models. In addition, we were able to identify the flare arising exactly at the time of the disc crossing from its photo-polarimetric and gamma-ray properties. This is an important identification, as it directly confirms the orbit model. Moreover, we saw a huge flare that lasted only one day. We may understand this as the lighting up of the jet of the secondary black hole when its Roche lobe is suddenly flooded by the gas from the primary disk. Therefore, this may be the first time we directly observed the secondary black hole in the OJ 287 binary system. Full article
(This article belongs to the Special Issue Distant Glowing Objects: Quest for Quasars)
Show Figures

Figure 1

Article
Investigating Possible Correlations between Gamma-Ray and Optical Lightcurves for TeV-Detected Northern Blazars over 8 Years of Observations
Galaxies 2023, 11(4), 81; https://doi.org/10.3390/galaxies11040081 - 01 Jul 2023
Viewed by 407
Abstract
Blazars are a subclass of active galactic nuclei (AGN) having relativistic jets aligned within a few degrees of our line-of-sight and form the majority of the AGN detected in the TeV regime. The Fermi-Large Area Telescope (LAT) is a pair-conversion telescope, sensitive to [...] Read more.
Blazars are a subclass of active galactic nuclei (AGN) having relativistic jets aligned within a few degrees of our line-of-sight and form the majority of the AGN detected in the TeV regime. The Fermi-Large Area Telescope (LAT) is a pair-conversion telescope, sensitive to photons having energies between 20 MeV and 2 TeV, and is capable of scanning the entire gamma-ray sky every three hours. Despite the remarkable success of the Fermi mission, many questions still remain unanswered, such as the site of gamma-ray production and the emission mechanisms involved. The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a high cadence all sky survey system optimized to be efficient for finding potentially dangerous asteroids, as well as in tracking and searching for highly variable and transient sources, such as AGN. In this study, we investigate possible correlations between the Fermi-LAT observations in the 100 MeV–300 GeV energy band and the ATLAS optical data in the R-band, centered at 679 nm, for a sample of 18 TeV-detected northern blazars over 8 years of observations between 2015 and 2022. Under the assumption that the optical and gamma-ray flares are produced by the same outburst propagating down the jet, the strong correlations found for some sources suggest a single-zone leptonic model of emission. Full article
(This article belongs to the Special Issue Distant Glowing Objects: Quest for Quasars)
Show Figures

Figure 1

Back to TopTop