Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Journal = Gases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Experimental Study and Thermodynamic Analysis of Carbon Dioxide Adsorption onto Activated Carbons Prepared from Biowaste Raw Materials
Gases 2023, 3(3), 112-135; https://doi.org/10.3390/gases3030008 - 14 Aug 2023
Viewed by 242
Abstract
Nutshells are regarded as cost-effective and abundant raw materials for producing activated carbons (ACs) for CO2 capture, storage, and utilization. The effects of carbonization temperature and thermochemical KOH activation conditions on the porous structure as a BET surface, micropore volume, micropore width, [...] Read more.
Nutshells are regarded as cost-effective and abundant raw materials for producing activated carbons (ACs) for CO2 capture, storage, and utilization. The effects of carbonization temperature and thermochemical KOH activation conditions on the porous structure as a BET surface, micropore volume, micropore width, and pore size distribution of ACs prepared from walnut (WNS) and hazelnut (HNS) shells were investigated. As a result, one-step carbonization at 900/800 °C and thermochemical KOH activation with a char/KOH mass ratio of 1:2/1:3 were found to be optimal for preparing ACs from WNS/HNS: WNS-AC-3 and HNS-AC-2, respectively. The textural properties of the WNS/HNS chars and ACs were characterized by low-temperature nitrogen vapor adsorption, XRD, and SEM methods. Dubinin’s theory of volume filling of micropores was used to evaluate the microporosity parameters and to calculate the CO2 adsorption equilibrium over the sub- and supercritical temperatures from 216.4 to 393 K at a pressure up to 10 MPa. The CO2 capture capacities of WNS- and HNS-derived adsorbents reached 5.9/4.1 and 5.4/3.9 mmol/g at 273/293 K under 0.1 MPa pressure, respectively. A discrepancy between the total and delivery volumetric adsorption capacities of the adsorbents was attributed to the strong binding of CO2 molecules with the adsorption sites, which were mainly narrow micropores with a high adsorption potential. The high initial differential heats of CO2 adsorption onto ACs of ~32 kJ/mol confirmed this proposal. The behaviors of thermodynamic functions (enthalpy and entropy) of the adsorption systems were attributed to changes in the state of adsorbed CO2 molecules determined by a balance between attractive and repulsive CO2–CO2 and CO2–AC interactions during the adsorption process. Thus, the chosen route for preparing ACs from the nutshells made it possible to prepare efficient carbon adsorbents with a relatively high CO2 adsorption performance due to a substantial volume of micropores with a size in the range of 0.6–0.7 nm. Full article
Show Figures

Figure 1

Communication
A New Ignition Source for the Determination of Safety Characteristics of Gases
Gases 2023, 3(3), 106-111; https://doi.org/10.3390/gases3030007 - 03 Jul 2023
Viewed by 390
Abstract
Safety characteristics are used to keep processes, including flammable gases, vapors, and combustible dusts, safe. In the standards for the determination of safety characteristics of gases and vapors, the induction spark is commonly used. However, classic transformers are hard to obtain, and replacement [...] Read more.
Safety characteristics are used to keep processes, including flammable gases, vapors, and combustible dusts, safe. In the standards for the determination of safety characteristics of gases and vapors, the induction spark is commonly used. However, classic transformers are hard to obtain, and replacement with new electronic transformers is not explicitly allowed in the standards. This article presents the investigation of five gases that are normally used to calibrate devices for the determination of safety characteristics, the maximum experimental safe gap (MESG), with an electronic transformer, and the values are compared to the ones that are obtained with the standard transformer. Additionally, calorimetric measurements on the net energy of both ignition sources were performed as well as open-circuit voltage measurements. It is concluded that the classic type of transformer can be replaced by the new type obtaining the same results for the MESG and introducing the same amount of energy into the system. Full article
Show Figures

Figure 1

Article
Hydrogen Purification through a Membrane–Cryogenic Integrated Process: A 3 E’s (Energy, Exergy, and Economic) Assessment
Gases 2023, 3(3), 92-105; https://doi.org/10.3390/gases3030006 - 27 Jun 2023
Viewed by 590
Abstract
Hydrogen (H2) is known for its clean energy characteristics. Its separation and purification to produce high-purity H2 is becoming essential to promoting a H2 economy. There are several technologies, such as pressure swing adsorption, membrane, and cryogenic, which can [...] Read more.
Hydrogen (H2) is known for its clean energy characteristics. Its separation and purification to produce high-purity H2 is becoming essential to promoting a H2 economy. There are several technologies, such as pressure swing adsorption, membrane, and cryogenic, which can be adopted to produce high-purity H2; however, each standalone technology has its own pros and cons. Unlike standalone technology, the integration of technologies has shown significant potential for achieving high purity with a high recovery. In this study, a membrane–cryogenic process was integrated to separate H2 via the desublimation of carbon dioxide. The proposed process was designed, simulated, and optimized in Aspen Hysys. The results showed that the H2 was separated with a 99.99% purity. The energy analysis revealed a net-specific energy consumption of 2.37 kWh/kg. The exergy analysis showed that the membranes and multi-stream heat exchangers were major contributors to the exergy destruction. Furthermore, the calculated total capital investment of the proposed process was 816.2 m$. This proposed process could be beneficial for the development of a H2 economy. Full article
(This article belongs to the Special Issue Membrane Processes for Decarbonisation)
Show Figures

Figure 1

Article
Computational Fluid Dynamics Analysis of a Hollow Fiber Membrane Module for Binary Gas Mixture
Gases 2023, 3(2), 77-91; https://doi.org/10.3390/gases3020005 - 22 May 2023
Cited by 1 | Viewed by 785
Abstract
The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was [...] Read more.
The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was considered with a fiber thickness where each component’s mass fluxes could be obtained based on the local partial pressures, solubility, diffusion, and the membrane’s selectivity. COMSOL Multiphysics was used to solve the numerical solution at corresponding operating conditions and results were compared to experimental data. The two different mixtures, CO2/CH4 and N2/O2, were investigated to obtain concentration gradient and mass flux profiles of CO2 and O2 species in an axial direction. This study allows assessing the feed pressure’s impact on the HFM system’s overall performance. These results demonstrate that the increment in feed pressures decreased the membrane system’s separation performance. The impact of hollow fiber length indicates that increasing the active fiber length has a higher effective mass transfer region but dilutes the permeate-side purities of O2 (46% to 28%) and CO2 (93% to 73%). The results show that increasing inlet pressure and a higher concentration gradient resulted in higher flux through the membrane. Full article
(This article belongs to the Special Issue Membrane Processes for Decarbonisation)
Show Figures

Figure 1

Article
Assessment of the Reverberations Caused by Predominant Air Pollutants on Urban Vegetation: A Multi-Site Study in Varanasi Located in Indo-Gangetic Plains
Gases 2023, 3(2), 57-76; https://doi.org/10.3390/gases3020004 - 05 Apr 2023
Cited by 2 | Viewed by 740
Abstract
Plant responses to air pollution have been extensively studied in urban environments. Nevertheless, detailed and holistic studies assessing their retaliation to air contaminants are still limited. The present study evaluates the effect of criteria pollutants (SO2, NO2, PM10 [...] Read more.
Plant responses to air pollution have been extensively studied in urban environments. Nevertheless, detailed and holistic studies assessing their retaliation to air contaminants are still limited. The present study evaluates the effect of criteria pollutants (SO2, NO2, PM10 and O3) on the overall biochemistry and resource allocation strategy of plants in order to categorize the dominant roadside species (Mangifera indica, Psidium guajava, Ficus religiosa, Azadirachta indica, Dalbergia sissoo, Cascabela thevetia and Bougainvillea spectabilis) of the Indo-Gangetic Plains (IGP), with different morphologies and habits, into species that are tolerant and sensitive to the prevailing air pollutants. This study was performed at three different land-use sites (industrial, commercial and reference) in Varanasi for two seasons (summer and winter). It was inferred that NO2 and PM10 consistently violated the air quality standards at all the sites. The fifteen assessed parameters reflected significant variations depending upon the site, season and plant species whereupon the enzymatic antioxidants (superoxide dismutase and catalase) and resource utilization parameters (leaf area and leaf dry matter content) were remarkably affected. Based on the studied parameters, it was entrenched that deciduous tree species with compound leaves (D. sissoo > A. indica) were identified as the less sensitive, followed by a shrub (C. thevetia > B. spectabilis), while evergreen species with simple leaves were the most sensitive. It was also substantiated that the morphology of the foliage contributed more toward the differential response of the plants to air pollutants than its habit. Full article
(This article belongs to the Special Issue Air Quality: Monitoring and Assessment)
Show Figures

Figure 1

Article
Greenhouse Gas Emissions of the Poultry Sector in Greece and Mitigation Potential Strategies
Gases 2023, 3(1), 47-56; https://doi.org/10.3390/gases3010003 - 14 Mar 2023
Viewed by 921
Abstract
The poultry sector is considered to be one of the most industrialized sectors of livestock production. Although the livestock sector contributes the 14.5% of total anthropogenic greenhouse gas (GHG) emissions, less attention has been paid in the respective emissions of the poultry sector [...] Read more.
The poultry sector is considered to be one of the most industrialized sectors of livestock production. Although the livestock sector contributes the 14.5% of total anthropogenic greenhouse gas (GHG) emissions, less attention has been paid in the respective emissions of the poultry sector compared to other farmed animals such as ruminants. The aim of the study was to estimate the carbon footprint of the poultry sector (layers, broilers, and backyards) in the Greek territory during the last 60 years as a means of exploring further mitigation strategies. Tier 2 methodology was used to estimate GHG emissions. Different mitigation scenarios related to changes in herd population, feeds, and manure management were examined. GHG emissions showed an increased trend over time. The different scenarios explored showed moderate to high mitigating potential depending on the parameters that were changed. Changes in manure management or diet revealed to have a higher potential to eliminate GHG emissions. Changes in population numbers showed a low mitigating potential. However, if mortality could be improved within industrialized farming systems, then it could be an indirect increase in product quantities with a slight increase in emissions. Therefore, depending on national priorities, the sector could improve its environmental impact by targeting aspects related to husbandry/management practices. Full article
Show Figures

Figure 1

Review
The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production
Gases 2023, 3(1), 25-46; https://doi.org/10.3390/gases3010002 - 03 Feb 2023
Cited by 5 | Viewed by 4432
Abstract
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen, produced with water electrolysis powered exclusively by renewable energy sources. However, several other technologies and sources are available or under development to satisfy the current [...] Read more.
Hydrogen has become the most promising energy carrier for the future. The spotlight is now on green hydrogen, produced with water electrolysis powered exclusively by renewable energy sources. However, several other technologies and sources are available or under development to satisfy the current and future hydrogen demand. In fact, hydrogen production involves different resources and energy loads, depending on the production method used. Therefore, the industry has tried to set a classification code for this energy carrier. This is done by using colors that reflect the hydrogen production method, the resources consumed to produce the required energy, and the number of emissions generated during the process. Depending on the reviewed literature, some colors have slightly different definitions, thus making the classifications imprecise. Therefore, this techno-economic analysis clarifies the meaning of each hydrogen color by systematically reviewing their production methods, consumed energy sources, and generated emissions. Then, an economic assessment compares the costs of the various hydrogen colors and examines the most feasible ones and their potential evolution. The scientific community and industry’s clear understanding of the advantages and drawbacks of each element of the hydrogen color spectrum is an essential step toward reaching a sustainable hydrogen economy. Full article
Show Figures

Graphical abstract

Review
A Review on Qualitative Assessment of Natural Gas Utilisation Options for Eliminating Routine Nigerian Gas Flaring
Gases 2023, 3(1), 1-24; https://doi.org/10.3390/gases3010001 - 28 Jan 2023
Cited by 4 | Viewed by 2693
Abstract
Natural gas flaring, with its harmful environmental, health, and economic effects, is common in the Nigerian oil and gas industry because of a lower tax regime for flared gases. Based on the adverse effects of flared gas, the Nigerian government has renewed and [...] Read more.
Natural gas flaring, with its harmful environmental, health, and economic effects, is common in the Nigerian oil and gas industry because of a lower tax regime for flared gases. Based on the adverse effects of flared gas, the Nigerian government has renewed and improved its efforts to reduce or eliminate gas flaring through the application of natural gas utilisation techniques. However, because the conventional approach to flare gas utilisation is heavily reliant on achieving scale, fuel, and end-product prices, not all technologies are technically and economically viable for typically capturing large and small quantities of associated gas from various flare sites or gas fields (located offshore or onshore). For these reasons, this paper reviews and compares various flare gas utilisation options to guide their proper selection for appropriate implementation in the eradication of routine gas flaring in Nigeria and to promote the Zero Routine Flaring initiative, which aims to reduce flaring levels dramatically by 2030. A qualitative assessment is used in this study to contrast the various flare gas utilisation options against key decision drivers. In this analysis, three natural gas utilisation processes—liquefied natural gas (LNG), gas to wire (GTW), and gas to methanol (GTM)—are recommended as options for Nigeria because of their economic significance, technological viability (both onshore and offshore), and environmental benefits. All these gas utilisation options have the potential to significantly reduce and prevent routine gas flaring in Nigeria and can be used separately or in combination to create synergies that could lower project costs and product market risk. This article clearly identifies the environmental benefits and the technical and economic viability of infrastructure investments to recover and repurpose flare gasses along with recommendation steps to select and optimise economies of scale for an associated natural gas utilisation option. Full article
Show Figures

Figure 1

Article
Explosive Processes in Permafrost as a Result of the Development of Local Gas-Saturated Fluid-Dynamic Geosystems
Gases 2022, 2(4), 146-165; https://doi.org/10.3390/gases2040009 - 07 Dec 2022
Viewed by 983
Abstract
The relevance of studying explosive processes in permafrost lies in the prospect of gas production from small gas-saturated zones in the subsurface; the influx of significant amounts of greenhouse gases from frozen soils creates a threat to infrastructure. The purpose of this article [...] Read more.
The relevance of studying explosive processes in permafrost lies in the prospect of gas production from small gas-saturated zones in the subsurface; the influx of significant amounts of greenhouse gases from frozen soils creates a threat to infrastructure. The purpose of this article is to reveal the general patterns of frozen soils’ transformation in local zones of natural explosions. The greatest volume of information about the processes preceding the formation of gas-emission craters can be obtained by studying the deformations of the cryogenic structure of soil. The typification of the elements of the cryogenic structures of frozen soils that form the walls of various gas-emission craters was carried out. Structural and morphological analyses were used as a methodological basis for studying gas-emission craters. This method involves a set of operations that establishes links between the cryogenic structure of the crater walls and the morphologies of their surfaces. In this study, it is concluded that gas-emission craters are the result of the self-development of local gas-dynamic geosystems that are in a non-equilibrium thermodynamic state with respect to the enclosing permafrost. Full article
(This article belongs to the Section Gas Emissions)
Show Figures

Figure 1

Article
Statistical Review of the Italian Gas Transmission System Operator under Conditions of the COVID-19 Pandemic and the Supply Restriction from the Russian Federation
Gases 2022, 2(4), 134-145; https://doi.org/10.3390/gases2040008 - 09 Oct 2022
Viewed by 1292
Abstract
The coronavirus pandemic caused a crisis in industrial economies, enforcing public concern. The first case of the infection in Europe occurred in Italy. Nowadays, in the field of European gas infrastructure, Italy stands as one of the leading countries transporting gaseous fuel to [...] Read more.
The coronavirus pandemic caused a crisis in industrial economies, enforcing public concern. The first case of the infection in Europe occurred in Italy. Nowadays, in the field of European gas infrastructure, Italy stands as one of the leading countries transporting gaseous fuel to end users. This article provides an overview of the distribution of natural gas flows in the Italian gas infrastructure in the face of the coronavirus outspread in the country and GAZPROM’s natural gas supply restrictions for European countries. This article presents, using the ARIMA method, a forecast of natural gas consumption of Italian consumers measured up to 2024. Full article
Show Figures

Figure 1

Review
Carbon Capture from CO2-Rich Natural Gas via Gas-Liquid Membrane Contactors with Aqueous-Amine Solvents: A Review
Gases 2022, 2(3), 98-133; https://doi.org/10.3390/gases2030007 - 01 Sep 2022
Cited by 1 | Viewed by 3724
Abstract
Gas–liquid membrane contactor is a promising process intensification technology for offshore natural gas conditioning in which weight and footprint constraints impose severe limitations. Thanks to its potential for substituting conventional packed/trayed columns for acid-gas absorption and acid-gas solvent regeneration, gas-liquid membrane contactors have [...] Read more.
Gas–liquid membrane contactor is a promising process intensification technology for offshore natural gas conditioning in which weight and footprint constraints impose severe limitations. Thanks to its potential for substituting conventional packed/trayed columns for acid-gas absorption and acid-gas solvent regeneration, gas-liquid membrane contactors have been investigated experimentally and theoretically in the past two decades, wherein aqueous-amine solvents and their blends are the most employed solvents for carbon dioxide removal from natural gas in gas-liquid membrane contactors. These efforts are extensively and critically reviewed in the present work. Experimentally, there are a remarkable lack of literature data in the context of gas–liquid membrane contactors regarding the following topics: water mass transfer; outlet stream temperatures; head-loss; and light hydrocarbons (e.g., ethane, propane, and heavier) mass transfer. Theoretically, there is a lack of complete models to predict gas-liquid membrane contactor operation, considering multicomponent mass balances, energy balances, and momentum balances, with an adequate thermodynamic framework for correct reactive vapor–liquid equilibrium calculation and thermodynamic and transport property prediction. Among the few works covering modeling of gas-liquid membrane contactors and implementation in professional process simulators, none of them implemented all the above aspects in a completely successful way. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Graphical abstract

Article
Impact of Coal Orthotropic and Hydraulic Fracture on Pressure Distribution in Coalbed Methane Reservoirs
Gases 2022, 2(3), 85-97; https://doi.org/10.3390/gases2030006 - 18 Aug 2022
Viewed by 1162
Abstract
Coalbed methane (CBM) shows tremendous in situ reserves, attracting a great deal of research interests around the world. The efficient development of CBM is closely related to the dynamic pressure distribution characteristics in the coal seam. As the dominant component of the geological [...] Read more.
Coalbed methane (CBM) shows tremendous in situ reserves, attracting a great deal of research interests around the world. The efficient development of CBM is closely related to the dynamic pressure distribution characteristics in the coal seam. As the dominant component of the geological reserve for CBM, the adsorption-state gas will not be exploited until the local coal pressure becomes less than the critical desorption pressure. Therefore, although the CBM reserve is fairly large, the production performance is generally limited, with a poor understanding of the dynamic pressure field during the CBM production. In this work, in order to address this issue properly, the coal’s inherent properties, the coal’s orthotropic features, as well as artificial hydraulic fracturing are considered, all of which affect pressure propagation in the coal seam. Notably, to the current knowledge, the impact of coal’s orthotropic features has received little attention, while the coal’s orthotropic features are formed during a fairly long geological evolution, changing the dynamic pressure field a lot. Numerical simulation is performed to shed light on the pressure propagation behavior. The results show that (a) coal’s orthotropic features mitigate the depressurization process of CBM development; (b) the increasing length of a hydraulic fracture is helpful for efficient decline in the average formation pressure; and (c) there exists an optimal layout mode for multi-well locations to minimize the average pressure. This article provides an in-depth analysis upon pressure distribution in CBM reservoirs under impacts of coal orthotropic feature and hydraulic fractures. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Figure 1

Brief Report
Influence of an Extreme Saharan Dust Event on the Air Quality of the West Region of Portugal
Gases 2022, 2(3), 74-84; https://doi.org/10.3390/gases2030005 - 07 Jul 2022
Cited by 4 | Viewed by 1511
Abstract
This paper describes how an extreme Saharan dust event that took place in March 2022 affected the Iberian Peninsula and was noticed not only by the outdoor air quality monitoring stations measuring PM2.5 and PM10 but also by indoor air monitoring [...] Read more.
This paper describes how an extreme Saharan dust event that took place in March 2022 affected the Iberian Peninsula and was noticed not only by the outdoor air quality monitoring stations measuring PM2.5 and PM10 but also by indoor air monitoring systems in Fatima, central Portugal. The observed particulate matter concentrations clearly show the influence that such an event has on the indoor air quality inside buildings and that the magnitude of that influence is also dependent on the specific characteristics of the buildings, mainly the ventilation conditions, as should be expected. Therefore, this study alerts us to the necessity of integrating indoor and outdoor air quality monitoring systems to achieve automated air conditioning systems capable of efficiently controlling both temperature and air cleanliness. Full article
Show Figures

Figure 1

Article
Efficiency of U.S. Oil and Gas Companies toward Energy Policies
Gases 2022, 2(2), 61-73; https://doi.org/10.3390/gases2020004 - 09 Jun 2022
Cited by 2 | Viewed by 1595
Abstract
The petroleum industry faces crucial environmental problems that exacerbate business instability, such as climate change and greenhouse gas emission regulations. Generally, governments focus on pricing, environmental protection, and supply security when developing energy policy. This article evaluates the technical efficiency of 53 oil [...] Read more.
The petroleum industry faces crucial environmental problems that exacerbate business instability, such as climate change and greenhouse gas emission regulations. Generally, governments focus on pricing, environmental protection, and supply security when developing energy policy. This article evaluates the technical efficiency of 53 oil and gas companies in the United States during the period 1998–2018 using the stochastic frontier analysis methods and investigates the degree to which energy policies influence the efficiency levels in these companies. Our empirical results show that the average technical efficiency of the 53 U.S. oil and gas companies is 0.75 and confirm that prices, production, consumption, and reserves of the U.S. petroleum and gas have a significant influence on technical efficiency levels. Specifically, our findings show that renewable energy and nuclear power contribute to explaining the distortion between the optimal and observed output of the U.S. oil and gas companies. Full article
Show Figures

Figure 1

Article
Risk Management Assessment in Oil and Gas Construction Projects Using Structural Equation Modeling (PLS-SEM)
Gases 2022, 2(2), 33-60; https://doi.org/10.3390/gases2020003 - 09 May 2022
Cited by 6 | Viewed by 4828
Abstract
Oil and gas construction projects are of great importance to support and facilitate the process of operation and production. However, these projects usually face chronic risks that lead to time overrun, cost overrun, and poor quality, affecting the projects’ success. Hence, this study [...] Read more.
Oil and gas construction projects are of great importance to support and facilitate the process of operation and production. However, these projects usually face chronic risks that lead to time overrun, cost overrun, and poor quality, affecting the projects’ success. Hence, this study focused on identifying, classifying, and modeling the risk factors that have negative effects on the success of construction projects in Yemen. The data were collected through a structured questionnaire. Statistical analysis, relative important index method, and probability impact matrix analysis were carried out to classify and rank the risk factors. The partial least squares path modeling or partial least squares structural equation modeling (PLS-PM, PLS-SEM) is a method for structural equation modeling that allows an estimation of complex cause–effect relationships in path models with latent variables. PLS-SEM was employed to analyze data collected from a questionnaire survey of 314 participants comprising the clients, contractors, and consultants working in oil and gas construction projects. The results showed that the goodness of fit index of the model is 0.638. The developed model was deemed to fit because the analysis result of the coefficient of determination test (R2) of the model was 0.720, which indicates the significant explanation of the developed model for the relationship between the causes of risks and their effects on the success of projects. The most impacted internal risk categories include project management, feasibility study design, and resource material availability. The main external risk elements include political, economic, and security considerations. The created risk factor model explained the influence of risk factors on the success of construction projects effectively, according to statistical and expert validation tests. Full article
Show Figures

Figure 1

Back to TopTop