Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,842)

Search Parameters:
Journal = Nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Editorial
Filled Carbon Nanotubes: Promising Material for Applications
Nanomaterials 2023, 13(17), 2472; https://doi.org/10.3390/nano13172472 (registering DOI) - 01 Sep 2023
Abstract
Carbon nanotubes (CNTs) were first filled with a number of metals starting in 1993 [...] Full article
Show Figures

Figure 1

Article
Silver–Gold Alloy Nanoparticles (AgAu NPs): Photochemical Synthesis of Novel Biocompatible, Bimetallic Alloy Nanoparticles and Study of Their In Vitro Peroxidase Nanozyme Activity
Nanomaterials 2023, 13(17), 2471; https://doi.org/10.3390/nano13172471 (registering DOI) - 01 Sep 2023
Abstract
Facile synthesis of metal nanoparticles with controlled physicochemical properties using environment-friendly reagents can open new avenues in biomedical applications. Nanomaterials with controlled physicochemical properties have opened new prospects for a variety of applications. In the present study, we report a single-step photochemical synthesis [...] Read more.
Facile synthesis of metal nanoparticles with controlled physicochemical properties using environment-friendly reagents can open new avenues in biomedical applications. Nanomaterials with controlled physicochemical properties have opened new prospects for a variety of applications. In the present study, we report a single-step photochemical synthesis of ~5 nm-sized silver (Ag) and gold (Au) nanoparticles (NPs), and Ag–Au alloy nanoparticles using L-tyrosine. The physicochemical and surface properties of both monometallic and bimetallic NPs were investigated by analytical, spectroscopic, and microscopic techniques. Our results also displayed an interaction between L-tyrosine and surface atoms that leads to the formation of AgAu NPs by preventing the growth and aggregation of the NPs. This method efficiently produced monodispersed NPs, with a narrow-sized distribution and good stability in an aqueous solution. The cytotoxicity assessment performed on breast cancer cell lines (MCF-7) revealed that the biofriendly L-tyrosine-capped AgNPs, AuNPs, and bimetallic AgAu NPs were biocompatible. Interestingly, AgAu NPs have also unveiled controlled cytotoxicity, cell viability, and in vitro peroxidase nanozyme activity reliant on metal composition and surface coating. Full article
(This article belongs to the Special Issue Recent Advances in the Construction and Applications of Nanozymes)
Show Figures

Figure 1

Article
Chitin Nanofibrils Enabled Core–Shell Microcapsules of Alginate Hydrogel
Nanomaterials 2023, 13(17), 2470; https://doi.org/10.3390/nano13172470 (registering DOI) - 01 Sep 2023
Abstract
An engineered 3D architectural network of the biopolymeric hydrogel can mimic the native cell environment that promotes cell infiltration and growth. Among several bio-fabricated hydrogel structures, core–shell microcapsules inherit the potential of cell encapsulation to ensure the growth and transport of cells and [...] Read more.
An engineered 3D architectural network of the biopolymeric hydrogel can mimic the native cell environment that promotes cell infiltration and growth. Among several bio-fabricated hydrogel structures, core–shell microcapsules inherit the potential of cell encapsulation to ensure the growth and transport of cells and cell metabolites. Herein, a co-axial electrostatic encapsulation strategy is used to create and encapsulate the cells into chitin nanofibrils integrated alginate hydrogel microcapsules. Three parameters that are critical in the electrostatic encapsulation process, hydrogel composition, flow rate, and voltage were optimized. The physicochemical characterization including structure, size, and stability of the core–shell microcapsules was analyzed by scanning electron microscope (SEM), FTIR, and mechanical tests. The cellular responses of the core–shell microcapsules were evaluated through in vitro cell studies by encapsulating NIH/3T3 fibroblast cells. Notably, the bioactive microcapsule showed that the cell viability was found excellent for more than 2 weeks. Thus, the results of this core–shell microcapsule showed a promising approach to creating 3D hydrogel networks suitable for different biomedical applications such as in vitro tissue models for toxicity studies, wound healing, and tissue repair. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

Article
Ambipolar to Unipolar Conversion in C70/Ferrocene Nanosheet Field-Effect Transistors
Nanomaterials 2023, 13(17), 2469; https://doi.org/10.3390/nano13172469 (registering DOI) - 01 Sep 2023
Abstract
Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular [...] Read more.
Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular network but also endows them with desirable semiconductor characteristics. Here, we present the intriguing ambipolar CT properties exhibited by nanosheets composed of single cocrystals of C70/ferrocene (C70/Fc). When heated to 150 °C, the initially ambipolar monoclinic C70/Fc nanosheet-based field-effect transistors (FETs) were transformed into n-type face-centered cubic (fcc) C70 nanosheet-based FETs owing to the elimination of Fc. This thermally induced alteration in the crystal structure was accompanied by an irreversible switching of the semiconducting behavior of the device; thus, the device transitions from ambipolar to unipolar. Importantly, the C70/Fc nanosheet-based FETs were also found to be much more thermally stable than the previously reported C60/Fc nanosheet-based FETs. Furthermore, we conducted visible/near-infrared diffuse reflectance and photoemission yield spectroscopies to investigate the crucial role played by Fc in modulating the CT characteristics. This study provides valuable insights into the overall functionality of these nanosheet structures. Full article
Show Figures

Figure 1

Article
Effect of Exposure Concentration and Growth Conditions on the Association of Cerium Oxide Nanoparticles with Green Algae
Nanomaterials 2023, 13(17), 2468; https://doi.org/10.3390/nano13172468 (registering DOI) - 01 Sep 2023
Abstract
The increasing release of engineered nanoparticles (NPs) into aquatic ecosystems makes it crucial to understand the interactions of NPs with aquatic organisms, such as algae. In this study, the association of CeO2 NPs with unicellular algae (Raphidocelis subcapitata) and changes [...] Read more.
The increasing release of engineered nanoparticles (NPs) into aquatic ecosystems makes it crucial to understand the interactions of NPs with aquatic organisms, such as algae. In this study, the association of CeO2 NPs with unicellular algae (Raphidocelis subcapitata) and changes to the cellular elemental profile were investigated using three exposure concentrations (1, 50, and 1000 µg CeO2/L) at two different algal growth conditions—exponential and inhibited growth (1% glutaraldehyde). After a 24 h-exposure, algal suspensions were settled by gravity and CeO2-NP/algae association was analyzed by single-cell inductively coupled plasma quadrupole mass spectrometry (sc-ICP-QMS) and ICP time-of-flight MS (sc-ICP-TOFMS). Concurrent detection of the cellular fingerprint with cerium indicated NP association with algae (adsorption/uptake) and changes in the cellular elemental profiles. Less than 5% of cells were associated with NPs when exposed to 1 µg/L. For 50 µg/L exposures in growing and inhibited cell treatments, 4% and 16% of cells were associated with CeO2 NPs, respectively. ICP-TOFMS analysis made it possible to exclude cellular exudates associated with CeO2 NPs due to the cellular fingerprint. Growing and inhibited cells had different elemental profile changes following exposure to CeO2 NPs—e.g., growing cells had higher Mg and lower P contents independent of CeO2 concentration compared to inhibited cells. Full article
Show Figures

Graphical abstract

Article
Facile Transfer of Spray-Coated Ultrathin AgNWs Composite onto the Skin for Electrophysiological Sensors
Nanomaterials 2023, 13(17), 2467; https://doi.org/10.3390/nano13172467 (registering DOI) - 31 Aug 2023
Abstract
Disposable wearable sensors that ultrathin and conformable to the skin are of significant interest as affordable and easy-to-use devices for short-term recording. This study presents a facile and low-cost method for transferring spray-coated silver nanowire (AgNW) composite films onto human skin using glossy [...] Read more.
Disposable wearable sensors that ultrathin and conformable to the skin are of significant interest as affordable and easy-to-use devices for short-term recording. This study presents a facile and low-cost method for transferring spray-coated silver nanowire (AgNW) composite films onto human skin using glossy paper (GP) and liquid bandages (LB). Due to the moderately hydrophobic and rough surface of the GP, the ultrathin AgNWs composite film (~200 nm) was easily transferred onto human skin. The AgNW composite films conformally attached to the skin when applied with a LB, resulting in the stable and continuous recording of wearable electrophysiological signals, including electromyogram (EMG), electrocardiogram (ECG), and electrooculogram (EOG). The volatile LB, deposited on the skin via spray coating, promoted rapid adhesion of the transferred AgNW composite films, ensuring stability to the AgNWs in external environments. The AgNWs composite supported with the LB film exhibited high water vapor breathability (~28 gm−2h−1), which can avoid the accumulation of sweat at the skin–sensor interface. This approach facilitates the creation of rapid, low-cost, and disposable tattoo-like sensors that are practical for extended use. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Soft and Wearable Electronics)
Show Figures

Figure 1

Review
Lasing from Micro- and Nano-Scale Photonic Disordered Structures for Biomedical Applications
Nanomaterials 2023, 13(17), 2466; https://doi.org/10.3390/nano13172466 - 31 Aug 2023
Viewed by 89
Abstract
A disordered photonic medium is one in which scatterers are distributed randomly. Light entering such media experiences multiple scattering events, resulting in a “random walk”-like propagation. Micro- and nano-scale structured disordered photonic media offer platforms for enhanced light–matter interaction, and in the presence [...] Read more.
A disordered photonic medium is one in which scatterers are distributed randomly. Light entering such media experiences multiple scattering events, resulting in a “random walk”-like propagation. Micro- and nano-scale structured disordered photonic media offer platforms for enhanced light–matter interaction, and in the presence of an appropriate gain medium, coherence-tunable, quasi-monochromatic lasing emission known as random lasing can be obtained. This paper discusses the fundamental physics of light propagation in micro- and nano-scale disordered structures leading to the random lasing phenomenon and related aspects. It then provides a state-of-the-art review of this topic, with special attention to recent advancements of such random lasers and their potential biomedical imaging and biosensing applications. Full article
(This article belongs to the Special Issue Nano-Photonics and Meta-Nanomaterials)
Show Figures

Figure 1

Article
Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring
Nanomaterials 2023, 13(17), 2465; https://doi.org/10.3390/nano13172465 - 31 Aug 2023
Viewed by 145
Abstract
Strain sensors based on conducting polymer hydrogels are considered highly promising candidates for wearable electronic devices. However, existing conducting polymer hydrogels are susceptible to aging, damage, and failure, which can greatly deteriorate the sensing performance of strain sensors based on these substances and [...] Read more.
Strain sensors based on conducting polymer hydrogels are considered highly promising candidates for wearable electronic devices. However, existing conducting polymer hydrogels are susceptible to aging, damage, and failure, which can greatly deteriorate the sensing performance of strain sensors based on these substances and the accuracy of data collection under large deformation. Developing conductive polymer hydrogels with concurrent high sensing performance and self-healing capability is a critical yet challenging task to improve the stability and lifetime of strain sensors. Herein, we design a self-healable conducting polymer hydrogel by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers and poly(vinyl alcohol) (PVA) via both physical and chemical crosslinking. This PEDOT:PSS-PVA nanocomposite hydrogel strain sensor displays an excellent strain monitoring range (>200%), low hysteresis (<1.6%), a high gauge factor (GF = 3.18), and outstanding self-healing efficiency (>83.5%). Electronic skins based on such hydrogel strain sensors can perform the accurate monitoring of various physiological signals, including swallowing, finger bending, and knee bending. This work presents a novel conducting polymer hydrogel strain sensor demonstrating both high sensing performance and self-healability, which can satisfy broad application scenarios, such as wearable electronics, health monitoring, etc. Full article
(This article belongs to the Special Issue Synthesis and Applications of Conducting Polymer-Based Nanocomposites)
Show Figures

Figure 1

Article
Exploring the Effects of Various Two-Dimensional Supporting Materials on the Water Electrolysis of Co-Mo Sulfide/Oxide Heterostructure
Nanomaterials 2023, 13(17), 2463; https://doi.org/10.3390/nano13172463 - 31 Aug 2023
Viewed by 121
Abstract
In this study, various two-dimensional (2D) materials were used as supporting materials for the bimetallic Co and Mo sulfide/oxide (CMSO) heterostructure. The water electrolysis activity of CMSO supported on reduced graphene oxide (rGO), graphite carbon nitride (gC3N4), and siloxene [...] Read more.
In this study, various two-dimensional (2D) materials were used as supporting materials for the bimetallic Co and Mo sulfide/oxide (CMSO) heterostructure. The water electrolysis activity of CMSO supported on reduced graphene oxide (rGO), graphite carbon nitride (gC3N4), and siloxene (SiSh) was better than that of pristine CMSO. In particular, rGO-supported CMSO (CMSO@rGO) exhibited a large surface area and a low interface charge-transfer resistance, leading to a low overpotential and a Tafel slope of 259 mV (10 mA/cm2) and 85 mV/dec, respectively, with excellent long-term stability over 40 h of continuous operation in the oxygen evolution reaction. Full article
Show Figures

Figure 1

Article
Fabrication and Characterization of Tantalum–Iron Composites for Photocatalytic Hydrogen Evolution
Nanomaterials 2023, 13(17), 2464; https://doi.org/10.3390/nano13172464 - 31 Aug 2023
Viewed by 150
Abstract
Photocatalytic hydrogen evolution represents a transformative avenue in addressing the challenges of fossil fuels, heralding a renewable and pristine alternative to conventional fossil fuel-driven energy paradigms. Yet, a formidable challenge is crafting a high-efficacy, stable photocatalyst that optimizes solar energy transduction and charge [...] Read more.
Photocatalytic hydrogen evolution represents a transformative avenue in addressing the challenges of fossil fuels, heralding a renewable and pristine alternative to conventional fossil fuel-driven energy paradigms. Yet, a formidable challenge is crafting a high-efficacy, stable photocatalyst that optimizes solar energy transduction and charge partitioning even under adversarial conditions. Within the scope of this investigation, tantalum–iron heterojunction composites characterized by intricate, discoidal nanostructured materials were meticulously synthesized using a solvothermal-augmented calcination protocol. The X-ray diffraction, coupled with Rietveld refinements delineated the nuanced alterations in phase constitution and structural intricacies engendered by disparate calcination thermal regimes. An exhaustive study encompassing nano-morphology, electronic band attributes, bandgap dynamics, and a rigorous appraisal of their photocatalytic prowess has been executed for the composite array. Intriguingly, the specimen denoted as 1000-1, a heterojunction composite of TaO2/Ta2O5/FeTaO4, manifested an exemplary photocatalytic hydrogen evolution capacity, registering at 51.24 µmol/g, which eclipses its counterpart, 1100-1 (Ta2O5/FeTaO4), by an impressive margin. Such revelations amplify the prospective utility of these tantalum iron matrices, endorsing their candidacy as potent agents for sustainable hydrogen production via photocatalysis. Full article
(This article belongs to the Special Issue Photocatalytic Ability of Composite Nanomaterials)
Show Figures

Figure 1

Article
Scalable Synthesis of Oxygen Vacancy-Rich Unsupported Iron Oxide for Efficient Thermocatalytic Conversion of Methane to Hydrogen and Carbon Nanomaterials
Nanomaterials 2023, 13(17), 2461; https://doi.org/10.3390/nano13172461 - 31 Aug 2023
Viewed by 162
Abstract
Thermocatalytic methane decomposition (TCMD) involving metal oxides is a more environmentally friendly and cost-effective strategy for scalable hydrogen fuel production compared to traditional methane steam reforming (MSR), as it requires less energy and produces fewer CO/CO2 emissions. However, the unsupported metal oxide [...] Read more.
Thermocatalytic methane decomposition (TCMD) involving metal oxides is a more environmentally friendly and cost-effective strategy for scalable hydrogen fuel production compared to traditional methane steam reforming (MSR), as it requires less energy and produces fewer CO/CO2 emissions. However, the unsupported metal oxide catalysts (such as α-Fe2O3) that would be suited for this purpose exhibit poor performance in TCMD. To overcome this issue, a novel strategy was developed as a part of this work, whereby oxygen vacancies (OVs) were introduced into unsupported α-Fe2O3 nanoparticles (NPs). Systematic characterization of the obtained materials through analytical techniques demonstrated that mesoporous nanostructured unsupported α-Fe2O3 with abundant oxygen vacancies (OV-rich α-Fe2O3 NPs) could be obtained by direct thermal decomposition of ferric nitrate at different calcination temperatures (500, 700, 900, and 1100 °C) under ambient conditions. The thermocatalytic activity of the resulting OV-rich α-Fe2O3 NPs was assessed by evaluating the methane conversion, hydrogen formation rate, and amount of carbon deposited. The TCMD results revealed that 900 °C was the most optimal calcination temperature, as it led to the highest methane conversion (22.5%) and hydrogen formation rate (47.0 × 10−5 mol H2 g−1 min−1) after 480 min. This outstanding thermocatalytic performance of OV-rich α-Fe2O3 NPs is attributed to the presence of abundant OVs on their surfaces, thus providing effective active sites for methane decomposition. Moreover, the proposed strategy can be cost-effectively scaled up for industrial applications, whereby unsupported metal oxide NPs can be employed for energy-efficient thermocatalytic CH4 decomposition into hydrogen fuel and carbon nanomaterials. Full article
(This article belongs to the Special Issue Catalysis of Porous Nanomaterials)
Show Figures

Graphical abstract

Article
Sol–Gel-Processed Y2O3–Al2O3 Mixed Oxide-Based Resistive Random-Access-Memory Devices
Nanomaterials 2023, 13(17), 2462; https://doi.org/10.3390/nano13172462 - 31 Aug 2023
Viewed by 143
Abstract
Herein, sol–gel-processed Y2O3–Al2O3 mixed oxide-based resistive random-access-memory (RRAM) devices with different proportions of the involved Y2O3 and Al2O3 precursors were fabricated on indium tin oxide/glass substrates. The corresponding structural, chemical, [...] Read more.
Herein, sol–gel-processed Y2O3–Al2O3 mixed oxide-based resistive random-access-memory (RRAM) devices with different proportions of the involved Y2O3 and Al2O3 precursors were fabricated on indium tin oxide/glass substrates. The corresponding structural, chemical, and electrical properties were investigated. The fabricated devices exhibited conventional bipolar RRAM characteristics without requiring a high-voltage forming process. With an increase in the percentage of Al2O3 precursor above 50 mol%, the crystallinity reduced, with the amorphous phase increasing owing to internal stress. Moreover, with increasing Al2O3 percentage, the lattice oxygen percentage increased and the oxygen vacancy percentage decreased. A 50% Y2O3–50% Al2O3 mixed oxide-based RRAM device exhibited the maximum high-resistance-state/low-resistance-state (HRS/LRS) ratio, as required for a large readout margin and array size. Additionally, this device demonstrated good endurance characteristics, maintaining stability for approximately 100 cycles with a high HRS/LRS ratio (>104). The HRS and LRS resistances were also retained up to 104 s without considerable degradation. Full article
(This article belongs to the Special Issue Nanostructures for Integrated Devices)
Show Figures

Figure 1

Editorial
Photonic/Electronic Material Performance and Application Based on Nanocrystals and Nanostructures
Nanomaterials 2023, 13(17), 2460; https://doi.org/10.3390/nano13172460 - 30 Aug 2023
Viewed by 104
Abstract
Electronic, optoelectronic, and optical devices have become integral to the fabric of the modern life, underpinning critical advancements in information technology, energy utilization, biotechnology, environmental monitoring, and nanotechnology [...] Full article
Article
New Eco-Friendly and Low-Energy Synthesis to Produce ZnO Nanoparticles for Real-World Scale Applications
Nanomaterials 2023, 13(17), 2458; https://doi.org/10.3390/nano13172458 - 30 Aug 2023
Viewed by 107
Abstract
This paper presents an original and sustainable method for producing ZnO nanoparticles (NPs) in response to global challenges (low energy requirements, low environmental impact, short production times, and high production yield). The method is based on an ion exchange process between an anionic [...] Read more.
This paper presents an original and sustainable method for producing ZnO nanoparticles (NPs) in response to global challenges (low energy requirements, low environmental impact, short production times, and high production yield). The method is based on an ion exchange process between an anionic resin and an aqueous ZnCl2 solution; it operates in one step at room temperature/ambient pressure without the need for complex apparatus or purification steps. From the kinetics, we observed the formation of pure simonkolleite, a zinc-layered hydroxide salt (Zn5(OH)8Cl2·H2O), after only 5 min of reaction. This compound, used elsewhere as a ZnO precursor after calcination at high temperatures, here decomposes at room temperature into ZnO, allowing extraordinary savings of time and energy. Finally, in only 90 min, pure and crystalline ZnO NPs are obtained, with a production yield > 99%. Several types of aggregates resulting from the self-assembly of small hexagonal platelets (solid or hollow in shape) were observed. Using our revolutionary method, we produced almost 10 kg of ZnO NPs per week without any toxic waste, significantly reducing energy consumption; this method allows transferring the use of these unique NPs from the laboratory environment to the real world. Full article
Show Figures

Figure 1

Article
Microstructure and Oxygen Evolution Property of Prussian Blue Analogs Prepared by Mechanical Grinding
Nanomaterials 2023, 13(17), 2459; https://doi.org/10.3390/nano13172459 (registering DOI) - 30 Aug 2023
Viewed by 136
Abstract
Solvent-free mechanochemical synthesis of efficient and low-cost double perovskite (DP), like a cage of Prussian blue (PB) and PB analogs (PBAs), is a promising approach for different applications such as chemical sensing, energy storage, and conversion. Although the solvent-free mechanochemical grinding approach has [...] Read more.
Solvent-free mechanochemical synthesis of efficient and low-cost double perovskite (DP), like a cage of Prussian blue (PB) and PB analogs (PBAs), is a promising approach for different applications such as chemical sensing, energy storage, and conversion. Although the solvent-free mechanochemical grinding approach has been extensively used to create halide-based perovskites, no such reports have been made for cyanide-based double perovskites. Herein, an innovative solvent-free mechanochemical synthetic strategy is demonstrated for synthesizing Fe4[Fe(CN)6]3, Co3[Fe(CN)6]2, and Ni2[Fe(CN)6], where defect sites such as carbon–nitrogen vacancies are inherently introduced during the synthesis. Among all the synthesized PB analogs, the Ni analog manifests a considerable electrocatalytic oxygen evolution reaction (OER) with a low overpotential of 288 mV to obtain the current benchmark density of 20 mA cm−2. We hypothesize that incorporating defects, such as carbon–nitrogen vacancies, and synergistic effects contribute to high catalytic activity. Our findings pave the way for an easy and inexpensive large-scale production of earth-abundant non-toxic electrocatalysts with vacancy-mediated defects for oxygen evolution reaction. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop