Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Journal = Electronic Materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Enhancing Light Harvesting in Dye-Sensitized Solar Cells through Mesoporous Silica Nanoparticle-Mediated Diffuse Scattering Back Reflectors
Electron. Mater. 2023, 4(3), 124-135; https://doi.org/10.3390/electronicmat4030010 - 30 Aug 2023
Viewed by 199
Abstract
Dye-sensitized solar cells (DSSCs) hold unique promise in solar photovoltaics owing to their low-cost fabrication and high efficiency in ambient conditions. However, to improve their commercial viability, effective, and low-cost methods must be employed to enhance their light harvesting capabilities, and hence photovoltaic [...] Read more.
Dye-sensitized solar cells (DSSCs) hold unique promise in solar photovoltaics owing to their low-cost fabrication and high efficiency in ambient conditions. However, to improve their commercial viability, effective, and low-cost methods must be employed to enhance their light harvesting capabilities, and hence photovoltaic (PV) performance. Improving the absorption of incoming light is a critical strategy for maximizing solar cell efficiency while overcoming material limitations. Mesoporous silica nanoparticles (MSNs) were employed herein as a reflective layer on the back of transparent counter electrodes. Chemically synthesized MSNs were applied to DSSCs via bar coating as a facile fabrication step compatible with roll-to-roll manufacturing. The MSNs diffusely scatter the unused incident light transmitted through the DSSCs back into the photoactive layers, increasing the absorption of light by N719 dye molecules. This resulted in a 20% increase in power conversion efficiency (PCE), from 5.57% in a standard cell to 6.68% with the addition of MSNs. The improved performance is attributed to an increase in photon absorption which led to the generation of a higher number of charge carriers, thus increasing the current density in DSSCs. These results were corroborated with electrochemical impedance spectroscopy (EIS), which showed improved charge transport kinetics. The use of MSNs as reflectors proved to be an effective practical method for enhancing the performance of thin film solar cells. Due to silica’s abundance and biocompatibility, MSNs are an attractive material for meeting the low-cost and non-toxic requirements for commercially viable integrated PVs. Full article
Show Figures

Figure 1

Article
Effect of the RF Power of PECVD on the Crystalline Fractions of Microcrystalline Silicon (μc-Si:H) Films and Their Structural, Optical, and Electronic Properties
Electron. Mater. 2023, 4(3), 110-123; https://doi.org/10.3390/electronicmat4030009 - 22 Jun 2023
Viewed by 493
Abstract
In this work, we report on the deposition of microcrystalline silicon (µc-Si:H) films produced from silane (SiH4), hydrogen (H2), and argon (Ar) mixtures using the plasma-enhanced chemical vapor deposition (PECVD) technique at 200 °C. Particularly, we studied the effect [...] Read more.
In this work, we report on the deposition of microcrystalline silicon (µc-Si:H) films produced from silane (SiH4), hydrogen (H2), and argon (Ar) mixtures using the plasma-enhanced chemical vapor deposition (PECVD) technique at 200 °C. Particularly, we studied the effect of RF power on the crystalline fraction (XC) of the deposited films, and we have correlated the XC with their optical, electrical, and structural characteristics. Different types of characterization were performed in the µc-Si:H film series. We used several techniques, such as Raman scattering spectroscopy, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM), among others. Our results show that RF power had a strong effect on the XC of the films, and there is an optimal value for producing films with the largest XC. Full article
Show Figures

Figure 1

Article
Exploring the Impact of Fe-Implantation on the Electrical Characteristics of Al/p-Si Schottky Barrier Diodes
Electron. Mater. 2023, 4(2), 95-109; https://doi.org/10.3390/electronicmat4020008 - 16 Jun 2023
Viewed by 567
Abstract
The effects of Fe-implantation on the electrical characteristics of Au/p-Si Schottky barrier diodes (SBDs) were studied using current–voltage (IV) and capacitance–voltage (CV) techniques. The Rutherford Backscattering Spectrometry (RBS) and Energy Dispersive [...] Read more.
The effects of Fe-implantation on the electrical characteristics of Au/p-Si Schottky barrier diodes (SBDs) were studied using current–voltage (IV) and capacitance–voltage (CV) techniques. The Rutherford Backscattering Spectrometry (RBS) and Energy Dispersive Spectroscopy (EDS) results showed that Fe ions are well implanted and present in the Fe-implanted Si material. The acquired results from IV and CV analysis showed that the diodes were well fabricated, and Fe-implantation changed the normal diode’s IV behaviour from typical exponential to ohmic. The ohmic behaviour was described in terms of the defect levels induced by Fe in the middle of the band gap of Si. The conduction mechanism for both forward and reverse currents was presented, and the effect of Fe-implantation on the conduction mechanisms was investigated. The CV results show that Fe generates a high density of minority carriers in p-Si, which agreed with the increase in reverse current observed in the IV results. The diode parameters in terms of saturation current, ideality factor, Schottky barrier height, doping density, and space charge region (SCR) width were used to investigate the effect of Fe in p-Si based diode. Owing to the observed changes, which were analogous to those induced by dopants that improve the radiation hardness of silicon, it was safe to say that Fe can also assist in the quest to improve the radiation hardness of silicon using the defect-engineering method. Full article
Show Figures

Figure 1

Article
A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition
Electron. Mater. 2023, 4(2), 80-94; https://doi.org/10.3390/electronicmat4020007 - 18 May 2023
Viewed by 808
Abstract
Extracting relevant data from real-world experiments is often challenging with intrinsic materials and device property dispersion, such as in organic electronics. However, multivariate data analysis can often be a mean to circumvent this and to extract more information when larger datasets are used [...] Read more.
Extracting relevant data from real-world experiments is often challenging with intrinsic materials and device property dispersion, such as in organic electronics. However, multivariate data analysis can often be a mean to circumvent this and to extract more information when larger datasets are used with learning algorithms instead of physical models. Here, we report on identifying relevant information descriptors for organic electrochemical transistors (OECTs) to classify aqueous electrolytes by ionic composition. Applying periodical gate pulses at different voltage magnitudes, we extracted a reduced number of nonredundant descriptors from the rich drain-current dynamics, which provide enough information to cluster electrochemical data by principal component analysis between Ca2+-, K+-, and Na+-rich electrolytes. With six current values obtained at the appropriate time domain of the device charge/discharge transient, one can identify the cationic identity of a locally probed transient current with only a single micrometric device. Applied to OECT-based neural sensors, this analysis demonstrates the capability for a single nonselective device to retrieve the rich ionic identity of neural activity at the scale of each neuron individually when learning algorithms are applied to the device physics. Full article
Show Figures

Figure 1

Article
Modelling of Low-Voltage Varistors’ Responses under Slow-Front Overvoltages
Electron. Mater. 2023, 4(2), 62-79; https://doi.org/10.3390/electronicmat4020006 - 09 May 2023
Viewed by 839
Abstract
In this study, commercially low-voltage MOVs are exposed to switching surges to analyse and model the relationship between the number of surges and the MOV grain barrier height response. Repeated slow-front overvoltage transients are used to degrade the protective qualities of metal oxide [...] Read more.
In this study, commercially low-voltage MOVs are exposed to switching surges to analyse and model the relationship between the number of surges and the MOV grain barrier height response. Repeated slow-front overvoltage transients are used to degrade the protective qualities of metal oxide surge arrester devices, affecting their reliability and stability. A total of 360 MOVs with similar specifications from three different manufacturers are degraded under switching surges at a constant temperature of 60 °C. The reference voltage and C-V characteristics of MOVs are measured before and after the degradation process to analyse the MOVs’ conditions. Grain barrier heights are determined from the C-V characteristics curve. An F-statistical analysis is then applied to analyse the effects of number of surges on the grain barrier height. The T-test is used to assess the statistical difference between the tested groups. Linear regression analysis is then applied to model the relationship between the number of surges and MOV grain barrier height. The results obtained show that the number of surges has a significant impact on grain barrier height. MOV grain barrier height is found to decrease as the number of surges applied increases. Regression models obtained for the tested MOV groups across all three manufacturers agree and indicate that the reduction in grain barrier height results from an increased number of surges. Regression coefficients of a developed model indicate that for one surge applied, the MOV grain barrier height decreases by 0.024, 0.055, and 0.033 eV/cm for manufacturers X, Y, and Z, respectively. Therefore, there is a linear relationship between grain barrier height and the number of applied switching surges. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors for Electronic Applications)
Show Figures

Figure 1

Perspective
On-Surface Synthesis and Applications of 2D Covalent Organic Framework Nanosheets
Electron. Mater. 2023, 4(2), 49-61; https://doi.org/10.3390/electronicmat4020005 - 12 Apr 2023
Viewed by 1035
Abstract
Covalent organic framework nanosheets (COF nanosheets) are two-dimensional crystalline porous polymers with in-plane covalent bonds and out-of-plane Van der Waals forces. Owing to the customizable structure, chemical modification, and ultra-high porosity, COF nanosheets show many fascinating properties unique to traditional two-dimensional materials, and [...] Read more.
Covalent organic framework nanosheets (COF nanosheets) are two-dimensional crystalline porous polymers with in-plane covalent bonds and out-of-plane Van der Waals forces. Owing to the customizable structure, chemical modification, and ultra-high porosity, COF nanosheets show many fascinating properties unique to traditional two-dimensional materials, and have shown potential applications in gas separation, sensors, electronic, and optoelectronic devices. This minireview aims to illustrate recent progress on two-dimensional covalent organic framework nanosheets, from two aspects of on-surface synthesis and potential applications. We first review the synthesis of COF nanosheets at the gas–solid interface. On-surface synthesis under ultrahigh vacuum and on-surface synthesis under vapor are highlighted. In addition, we also review the liquid–solid interface synthesis of COF nanosheets at various substrates, i.e., both crystalline and amorphous substrates. Beyond the synthesis, we highlight state-of-the-art applications of the COF nanosheets, particularly in charge transport, chemical sensors, and gas separation. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials II)
Show Figures

Figure 1

Article
Chlorine Adsorption on TiO2(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
Electron. Mater. 2023, 4(1), 33-48; https://doi.org/10.3390/electronicmat4010004 - 07 Mar 2023
Viewed by 919
Abstract
Chloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H2O adsorbate states near the valence band maximum (VBM) edge, the difficulty of water dissociation incidents has been reported [...] Read more.
Chloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H2O adsorbate states near the valence band maximum (VBM) edge, the difficulty of water dissociation incidents has been reported on the rutile TiO2 surface as the excitation energy is around the band gap energy of TiO2. It is interesting whether the extra chloride can be a benefit to the water dissociation or not. In this study, the models of chlorine adatoms placed on the rutile TiO2 (110)/water interface are constructed using ab initio methods. The time-dependent spatial charges, bond-lengths of water molecules, and Hirshfeld charges are calculated by real-time time-dependent density functional theory and the Ehrenfest dynamics theory for investigating the excited state nonadiabatic dynamics of water dissociation. This study presents two photoinduced water-splitting pathways related to chlorine and analyzes the photogenerated hole along the reactions. The first step of water dissociation relies on the localized competition of oxygen charges between the dissociated water and the bridge site of TiO2 for transforming the water into hydroxyl and hydrogen by photoinduced driving force. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials II)
Show Figures

Figure 1

Review
Recent Research Process of Carbon Engineering on Na3V2(PO4)3 for Sodium-Ion Battery Cathodes: A Mini Review
Electron. Mater. 2023, 4(1), 17-32; https://doi.org/10.3390/electronicmat4010003 - 31 Jan 2023
Viewed by 1483
Abstract
Owing to the 3D open framework, excellent structural stability, and high ionic conductivity, NASICON-type compounds are extensively employed as promising cathode materials for sodium-ion batteries (SIBs). Being one of the representative NASICON-type compounds, the Na3V2(PO4)3 delivers [...] Read more.
Owing to the 3D open framework, excellent structural stability, and high ionic conductivity, NASICON-type compounds are extensively employed as promising cathode materials for sodium-ion batteries (SIBs). Being one of the representative NASICON-type compounds, the Na3V2(PO4)3 delivers high theoretical capacity with an operating voltage exceeding 3.3 V, enabling it to be a good candidate for SIBs. Unfortunately, the Na3V2(PO4)3 suffers from low electronic conductivity. In this work, we briefly review the recent research progress on novel carbon engineering strategies to enhance the electronic conductivity of Na3V2(PO4)3. Moreover, we will point out the issues relating to the development of NASICON cathode materials and put forward some suggestions. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials II)
Show Figures

Figure 1

Editorial
Acknowledgment to the Reviewers of Electronic Materials in 2022
Electron. Mater. 2023, 4(1), 15-16; https://doi.org/10.3390/electronicmat4010002 - 18 Jan 2023
Viewed by 533
Abstract
High-quality academic publishing is built on rigorous peer review [...] Full article
Article
Study of Electronic Bands of Diatomic Molecules for the Evaluation of Toxicity of Green Crackers Using LIBS Coupled with Chemometric Method
Electron. Mater. 2023, 4(1), 1-14; https://doi.org/10.3390/electronicmat4010001 - 27 Dec 2022
Viewed by 979
Abstract
Laser-induced Breakdown Spectroscopy (LIBS) is primarily an atomic emission spectroscopic method based on analyzing the spectral lines of elements in the laser-induced plasma. However, when the plasma cools down after its ignition, i.e., when one collects the emissions from the plasma after a [...] Read more.
Laser-induced Breakdown Spectroscopy (LIBS) is primarily an atomic emission spectroscopic method based on analyzing the spectral lines of elements in the laser-induced plasma. However, when the plasma cools down after its ignition, i.e., when one collects the emissions from the plasma after a certain interval of time/gate delay (~1 micro-second), the signature of the electronic bands of diatomic molecules is also observed along with ionic/atomic emission lines. The present manuscript reports the evaluation of toxicity/pollutants in green crackers based on the intensity of the electronic bands of the Aluminum Oxide (AlO), calcium oxide (CaO), and strontium oxide (SrO) molecules observed in the laser-induced plasma of the firecrackers. LIBS spectra of the green crackers show the presence of spectral lines of the heavy/toxic elements such as Al, Ca, Sr, Cr, Cu, and Ba, along with the electronic bands of the AlO, CaO, and SrO. Fourier Transform Infra-Red Spectroscopy (FTIR) has been used to validate the LIBS results and confirm the molecules in these crackers. The concentration of toxic elements in green crackers such as Aluminum (Al), Copper (Cu), and Chromium (Cr) has also been estimated using the Partial Least Square Regression method (PLSR) to evaluate and compare the extent of the toxicity of green crackers. Full article
(This article belongs to the Topic Characterization of Electrochemical Materials)
Show Figures

Figure 1

Article
Stress-Relaxed AlN-Buffer-Oriented GaN-Nano-Obelisks-Based High-Performance UV Photodetector
Electron. Mater. 2022, 3(4), 357-367; https://doi.org/10.3390/electronicmat3040029 - 09 Dec 2022
Cited by 6 | Viewed by 1428
Abstract
Epitaxial GaN nanostructures are developed, and the influence of the AlN buffer layer (temperature modulation) on material characteristics and optoelectronic device application is assessed. The AlN buffer layer was grown on a Si (111) substrate at varying temperatures (770–830 °C), followed by GaN [...] Read more.
Epitaxial GaN nanostructures are developed, and the influence of the AlN buffer layer (temperature modulation) on material characteristics and optoelectronic device application is assessed. The AlN buffer layer was grown on a Si (111) substrate at varying temperatures (770–830 °C), followed by GaN growth using plasma-assisted molecular beam epitaxy. The investigation revealed that the comparatively lower temperature AlN buffer layer was responsible for stress and lattice strain relaxation and was realized as the GaN nano-obelisk structures. Contrarily, the increased temperature of the AlN growth led to the formation of GaN nanopyramidal and nanowax/wane structures. These grown GaN/AlN/Si heterostructures were utilized to develop photodetectors in a metal–semiconductor–metal geometry format. The performance of these fabricated optoelectronic devices was examined under ultraviolet illumination (UVA), where the GaN nano-obelisks-based device attained the highest responsivity of 118 AW−1. Under UVA (325 nm) illumination, the designed device exhibited a high detectivity of 1 × 1010 Jones, noise equivalent power of 1 × 10−12 WHz−1/2, and external quantum efficiency of 45,000%. The analysis revealed that the quality of the AlN buffer layer significantly improved the optoelectronic performance of the device. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials II)
Show Figures

Figure 1

Article
Indirect Evaluation of the Electrocaloric Effect in PbZrTiO3 (20/80)-Based Epitaxial Thin Film Structures
Electron. Mater. 2022, 3(4), 344-356; https://doi.org/10.3390/electronicmat3040028 - 01 Nov 2022
Viewed by 1224
Abstract
Electrocaloric effect is the adiabatic temperature change in a dielectric material when an electric field is applied or removed, and it can be considered as an alternative refrigeration method. Materials with ferroelectric order exhibit large temperature variations in the vicinity of a phase [...] Read more.
Electrocaloric effect is the adiabatic temperature change in a dielectric material when an electric field is applied or removed, and it can be considered as an alternative refrigeration method. Materials with ferroelectric order exhibit large temperature variations in the vicinity of a phase transition, while antiferroelectrics and relaxors may exhibit a negative electrocaloric effect. In this study, the temperature variation in polarization was investigated for epitaxial ferroelectric thin film structures based on PbZrTiO3 materials in simple or complex multilayered structures. We propose the intriguing possibility of a giant negative electrocaloric effect (ΔT = −3.7 K at room temperature and ΔT = −5.5 K at 370 K) in a simple epitaxial Pb(ZrTi)O3 capacitor. Furthermore, it was shown that abnormal temperature variation in polarization is dependent on the non-FE component introduced in a multilayered structure. No significant variation in polarization with temperature was obtained for PZT/STON multilayered structures around room temperature. However, for PZT/BST or PZT/Nb2O5 multilayers, an abnormal temperature variation in polarization was revealed, which was similar to a simple PZT layer. The giant and negative ∆T values were attributed to internal fields and defects formed due to the large depolarization fields when the high polarization of the FE component was not fully compensated either by the electrodes or by the interface with an insulator layer. The presented results make Pb(ZrTi)O3-based structures promising for cooling applications operating near room temperature. Full article
(This article belongs to the Special Issue Electronic Processes in Ferroelectrics)
Show Figures

Figure 1

Article
Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique
Electron. Mater. 2022, 3(4), 332-343; https://doi.org/10.3390/electronicmat3040027 - 31 Oct 2022
Cited by 2 | Viewed by 1199
Abstract
Aerosol deposition (AD) is a simple, dry raw-powder deposition process in which the targeted film is formed by direct bombardment of accelerated starting powder onto the substrate surface at room temperature. Despite the increased interest in AD film formation, no work has been [...] Read more.
Aerosol deposition (AD) is a simple, dry raw-powder deposition process in which the targeted film is formed by direct bombardment of accelerated starting powder onto the substrate surface at room temperature. Despite the increased interest in AD film formation, no work has been completed to systematically investigate the formation of dense zinc oxide (ZnO) films using the AD method and their optical properties. Therefore, this study was carried out to investigate the effect of AD gas flow rate on the formation of AD films and the optical properties of aerosol-deposited ZnO films. ZnO films with nanosized (<40 nm) crystallites were successfully deposited on FTO substrates at room temperature. A dense and uniform layer of aerosol-deposited ZnO films with a roughened surface was obtained without subsequent heat treatment. With the increase in the AD gas flow rate, the crystal size and the AD film’s thickness were reduced. The Raman spectroscopy verified that the thin film was of a ZnO wurtzite structure. The room temperature photoluminescence of the ZnO thin film produced strong visible emissions. The findings of this work demonstrated that AD can be an alternative technique for the rapid deposition of dense and thick ZnO films for optoelectronic applications. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials II)
Show Figures

Figure 1

Review
Textile Materials for Wireless Energy Harvesting
Electron. Mater. 2022, 3(4), 301-331; https://doi.org/10.3390/electronicmat3040026 - 08 Oct 2022
Cited by 2 | Viewed by 2313
Abstract
Wireless energy harvesting, a technique to generate direct current (DC) electricity from ambient wireless signals, has recently been featured as a potential solution to reduce the battery size, extend the battery life, or replace batteries altogether for wearable electronics. Unlike other energy harvesting [...] Read more.
Wireless energy harvesting, a technique to generate direct current (DC) electricity from ambient wireless signals, has recently been featured as a potential solution to reduce the battery size, extend the battery life, or replace batteries altogether for wearable electronics. Unlike other energy harvesting techniques, wireless energy harvesting has a prominent advantage of ceaseless availability of ambient signals, but the common form of technology involves a major challenge of limited output power because of a relatively low ambient energy density. Moreover, the archetypal wireless energy harvesters are made of printed circuit boards (PCBs), which are rigid, bulky, and heavy, and hence they are not eminently suitable for body-worn applications from both aesthetic and comfort points of view. In order to overcome these limitations, textile-based wireless energy harvesting architectures have been proposed in the past decade. Being made of textile materials, this new class of harvesters can be seamlessly integrated into clothing in inherently aesthetic and comfortable forms. In addition, since clothing offers a large surface area, multiple harvesting units can be deployed to enhance the output power. In view of these unique and irreplaceable benefits, this paper reviews key recent progress in textile-based wireless energy harvesting strategies for powering body-worn electronics. Comparisons with other power harvesting technologies, historical development, fundamental principles of operation and techniques for fabricating textile-based wireless power harvesters are first recapitulated, followed by a review on the principal advantages, challenges, and opportunities. It is one of the purposes of this paper to peruse the current state-of-the-art and build a scientific knowledge base to aid further advancement of power solutions for wearable electronics. Full article
Show Figures

Graphical abstract

Article
Thermal Annealing Effect on the Structure, Optical and Electrical Properties of Lanthanum Manganite Thin Films Prepared by Reactive Co-Sputtering
Electron. Mater. 2022, 3(4), 291-300; https://doi.org/10.3390/electronicmat3040025 - 30 Sep 2022
Viewed by 1173
Abstract
Lanthanum manganite (LMO) thin films were deposited by co-sputtering La and Mn targets in an Ar and O2 gas mixture. The films were synthesized on silicon and fused silica substrates. The influences of thermal annealing on the structure, optical and electrical properties [...] Read more.
Lanthanum manganite (LMO) thin films were deposited by co-sputtering La and Mn targets in an Ar and O2 gas mixture. The films were synthesized on silicon and fused silica substrates. The influences of thermal annealing on the structure, optical and electrical properties of LMO films were investigated. The results exhibited a correlation between these properties. In the amorphous state, an increase in annealing temperature improved the optical transmission and decreased the electrical capacitance. The beginning of crystallization at 600 °C was manifested by a strong increase in the capacitance and a decrease in the optical transmission. At higher annealing temperature, polycrystalline films were obtained with different optical and electrical characteristics. On the other hand, the annealed LMO films showed a photocurrent effect during exposure to a weak LED light. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors for Electronic Applications)
Show Figures

Figure 1

Back to TopTop