Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (471)

Search Parameters:
Journal = Neurology International

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Protocol
Social Cognition Impairments in Association to Clinical, Cognitive, Mood, and Fatigue Features in Multiple Sclerosis: A Study Protocol
Neurol. Int. 2023, 15(3), 1106-1116; https://doi.org/10.3390/neurolint15030068 (registering DOI) - 01 Sep 2023
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system (CNS), characterized by the diffuse grey and white matter damage. Cognitive impairment (CI) is a frequent clinical feature in patients with MS (PwMS) that can be prevalent even in early [...] Read more.
Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system (CNS), characterized by the diffuse grey and white matter damage. Cognitive impairment (CI) is a frequent clinical feature in patients with MS (PwMS) that can be prevalent even in early disease stages, affecting the physical activity and active social participation of PwMS. Limited information is available regarding the influence of MS in social cognition (SC), which may occur independently from the overall neurocognitive dysfunction. In addition, the available information regarding the factors that influence SC in PwMS is limited, e.g., factors such as a patient’s physical disability, different cognitive phenotypes, mood status, fatigue. Considering that SC is an important domain of CI in MS and may contribute to subjects’ social participation and quality of life, we herein conceptualize and present the methodological design of a cross-sectional study in 100 PwMS of different disease subtypes. The study aims (a) to characterize SC impairment in PwMS in the Greek population and (b) to unveil the relationship between clinical symptoms, phenotypes of CI, mood status and fatigue in PwMS and the potential underlying impairment on tasks of SC. Full article
(This article belongs to the Special Issue Advances in Multiple Sclerosis, Volume II)
Review
Migraine: Advances in the Pathogenesis and Treatment
Neurol. Int. 2023, 15(3), 1052-1105; https://doi.org/10.3390/neurolint15030067 (registering DOI) - 31 Aug 2023
Abstract
This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby [...] Read more.
This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby improving our understanding of its pathophysiology. Special emphasis is given to the role of calcitonin gene-related peptide (CGRP) in migraine development. CGRP not only contributes to symptoms but also represents a promising therapeutic target, with inhibitors showing effectiveness in migraine management. The article further explores traditional medical treatments, scrutinizing the mechanisms, benefits, and limitations of commonly prescribed medications. This provides a segue into an analysis of emerging therapeutic strategies and their potential to enhance migraine management. Finally, the paper delves into neuromodulation as an innovative treatment modality. Clinical studies indicating its effectiveness in migraine management are reviewed, and the advantages and limitations of this technique are discussed. In summary, the article aims to enhance the understanding of migraine pathogenesis and present novel therapeutic possibilities that could revolutionize patient care. Full article
Show Figures

Figure 1

Brief Report
Serum GDF-15 Levels in Patients with Parkinson’s Disease, Progressive Supranuclear Palsy, and Multiple System Atrophy
Neurol. Int. 2023, 15(3), 1044-1051; https://doi.org/10.3390/neurolint15030066 - 30 Aug 2023
Viewed by 199
Abstract
Serum growth differentiation factor 15 (GDF-15) levels are elevated in patients with Parkinson’s disease (PD) and may help differentiate these patients from healthy individuals. We aimed to clarify whether serum GDF-15 levels can help differentiate PD from atypical parkinsonian syndromes and determine the [...] Read more.
Serum growth differentiation factor 15 (GDF-15) levels are elevated in patients with Parkinson’s disease (PD) and may help differentiate these patients from healthy individuals. We aimed to clarify whether serum GDF-15 levels can help differentiate PD from atypical parkinsonian syndromes and determine the association between serum GDF-15 levels and clinical parameters. We prospectively enrolled 46, 15, and 12 patients with PD, progressive supranuclear palsy (PSP), and multiple system atrophy (MSA), respectively. The serum GDF-15 level in patients with PD (1394.67 ± 558.46 pg/mL) did not differ significantly from that in patients with PSP (1491.27 ± 620.78 pg/mL; p = 0.573) but was significantly higher than that in patients with MSA (978.42 ± 334.66 pg/mL; p = 0.017). Serum GDF-15 levels were positively correlated with age in patients with PD (r = 0.458; p = 0.001); PSP (r = 0.565; p = 0.028); and MSA (r = 0.708; p = 0.010). After accounting for age differences, serum GDF-15 levels did not differ significantly between patients with PD and MSA (p = 0.114). Thus, age has a strong influence on serum GDF-15 levels, which may not differ significantly between patients with PD and atypical parkinsonian syndromes such as PSP and MSA. Full article
(This article belongs to the Collection Advances in Neurodegenerative Diseases)
Show Figures

Figure 1

Article
Atrial Fibrillation and Reperfusion Therapy in Acute Ischaemic Stroke Patients: Prevalence and Outcomes—A Comprehensive Systematic Review and Meta-Analysis
Neurol. Int. 2023, 15(3), 1014-1043; https://doi.org/10.3390/neurolint15030065 - 25 Aug 2023
Viewed by 198
Abstract
Atrial fibrillation (AF) significantly contributes to acute ischaemic stroke (AIS), yet its precise influence on clinical outcomes post-intravenous thrombolysis (IVT) and post-endovascular thrombectomy (EVT) has remained elusive. Furthermore, the overall prevalence of AF in AIS patients undergoing reperfusion therapy has not been clearly [...] Read more.
Atrial fibrillation (AF) significantly contributes to acute ischaemic stroke (AIS), yet its precise influence on clinical outcomes post-intravenous thrombolysis (IVT) and post-endovascular thrombectomy (EVT) has remained elusive. Furthermore, the overall prevalence of AF in AIS patients undergoing reperfusion therapy has not been clearly determined. Employing random-effects meta-analyses, this research aimed to estimate the pooled prevalence of AF among AIS patients undergoing reperfusion therapy, while also examining the association between AF and clinical outcomes such as functional outcomes, symptomatic intracerebral haemorrhage (sICH) and mortality. Studies comparing AF and non-AF patient groups undergoing reperfusion therapy were identified and included following an extensive database search. Forty-nine studies (n = 66,887) were included. Among IVT patients, the prevalence of AF was 31% (Effect Size [ES] 0.31 [95%CI 0.28–0.35], p < 0.01), while in EVT patients, it reached 42% (ES 0.42 [95%CI 0.38–0.46], p < 0.01), and in bridging therapy (BT) patients, it stood at 36% (ES 0.36 [95%CI 0.28–0.43], p < 0.01). AF was associated with significantly lower odds of favourable 90-day functional outcomes post IVT (Odds Ratio [OR] 0.512 [95%CI 0.376–0.696], p < 0.001), but not post EVT (OR 0.826 [95%CI 0.651–1.049], p = 0.117). Our comprehensive meta-analysis highlights the varying prevalence of AF among different reperfusion therapies and its differential impact on patient outcomes. The highest pooled prevalence of AF was observed in EVT patients, followed by BT and IVT patients. Interestingly, our analysis revealed that AF was significantly associated with poorer clinical outcomes following IVT. Such an association was not observed following EVT. Full article
Show Figures

Figure 1

Systematic Review
Leukoaraiosis as a Promising Biomarker of Stroke Recurrence among Stroke Survivors: A Systematic Review
Neurol. Int. 2023, 15(3), 994-1013; https://doi.org/10.3390/neurolint15030064 - 21 Aug 2023
Viewed by 229
Abstract
Stroke is the leading cause of functional disability worldwide, with increasing prevalence in adults. Given the considerable negative impact on patients’ quality of life and the financial burden on their families and society, it is essential to provide stroke survivors with a timely [...] Read more.
Stroke is the leading cause of functional disability worldwide, with increasing prevalence in adults. Given the considerable negative impact on patients’ quality of life and the financial burden on their families and society, it is essential to provide stroke survivors with a timely and reliable prognosis of stroke recurrence. Leukoaraiosis (LA) is a common neuroimaging feature of cerebral small-vessel disease. By researching the literature of two different databases (MEDLINE and Scopus), the present study aims to review all relevant studies from the last decade, dealing with the clinical utility of pre-existing LA as a prognostic factor for stroke recurrence in stroke survivors. Nineteen full-text articles published in English were identified and included in the present review, with data collected from a total of 34,546 stroke patients. A higher rate of extended LA was strongly associated with stroke recurrence in all stroke subtypes, even after adjustment for clinical risk factors. In particular, patients with ischemic stroke or transient ischemic attack with advanced LA had a significantly higher risk of future ischemic stroke, whereas patients with previous intracerebral hemorrhage and severe LA had a more than 2.5-fold increased risk of recurrent ischemic stroke and a more than 30-fold increased risk of hemorrhagic stroke. Finally, in patients receiving anticoagulant treatment for AF, the presence of LA was associated with an increased risk of recurrent ischemic stroke and intracranial hemorrhage. Because of this valuable predictive information, evaluating LA could significantly expand our knowledge of stroke patients and thereby improve overall stroke care. Full article
Show Figures

Figure 1

Article
FTD/ALS Type 7-Associated Thr104Asn Mutation of CHMP2B Blunts Neuronal Process Elongation, and Is Recovered by Knockdown of Arf4, the Golgi Stress Regulator
Neurol. Int. 2023, 15(3), 980-993; https://doi.org/10.3390/neurolint15030063 - 11 Aug 2023
Viewed by 545
Abstract
Frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTD/ALS7) is an autosomal dominant neurodegenerative disorder characterized by the onset of FTD and/or ALS, mainly in adulthood. Patients with some types of mutations, including the Thr104Asn (T104N) mutation of charged multivesicular body protein 2B [...] Read more.
Frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTD/ALS7) is an autosomal dominant neurodegenerative disorder characterized by the onset of FTD and/or ALS, mainly in adulthood. Patients with some types of mutations, including the Thr104Asn (T104N) mutation of charged multivesicular body protein 2B (CHMP2B), have predominantly ALS phenotypes, whereas patients with other mutations have predominantly FTD phenotypes. A few mutations result in patients having both phenotypes approximately equally; however, the reason why phenotypes differ depending on the position of the mutation is unknown. CHMP2B comprises one part of the endosomal sorting complexes required for transport (ESCRT), specifically ESCRT-III, in the cytoplasm. We describe here, for the first time, that CHMP2B with the T104N mutation inhibits neuronal process elongation in the N1E-115 cell line, a model line undergoing neuronal differentiation. This inhibitory phenotype was accompanied by changes in marker protein expression. Of note, CHMP2B with the T104N mutation, but not the wild-type form, was preferentially accumulated in the Golgi body. Of the four major Golgi stress signaling pathways currently known, the pathway through Arf4, the small GTPase, was specifically upregulated in cells expressing CHMP2B with the T104N mutation. Conversely, knockdown of Arf4 with the cognate small interfering (si)RNA recovered the neuronal process elongation inhibited by the T104N mutation. These results suggest that the T104N mutation of CHMP2B inhibits morphological differentiation by triggering Golgi stress signaling, revealing a possible therapeutic molecular target for recovering potential molecular and cellular phenotypes underlying FTD/ALS7. Full article
Show Figures

Figure 1

Review
In Search of a Function for the N6-Methyladenosine in Epitranscriptome, Autophagy and Neurodegenerative Diseases
Neurol. Int. 2023, 15(3), 967-979; https://doi.org/10.3390/neurolint15030062 - 10 Aug 2023
Viewed by 524
Abstract
Changes in epitranscriptome with N6-methyladenine (m6A) modification could be involved in the development of multiple diseases, which might be a prevalent modification of messenger RNAs (mRNAs) in eukaryotes. The m6A modification might be performed through the action of methyltransferases, demethylases, and methylation-binding proteins. [...] Read more.
Changes in epitranscriptome with N6-methyladenine (m6A) modification could be involved in the development of multiple diseases, which might be a prevalent modification of messenger RNAs (mRNAs) in eukaryotes. The m6A modification might be performed through the action of methyltransferases, demethylases, and methylation-binding proteins. Importantly, the m6A methylation may be associated with various neurological disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, aging-related diseases, and/or aging itself. In addition, the m6A methylation might functionally regulate the eukaryotic transcriptome by influencing the splicing, export, subcellular localization, translation, stability, and decay of mRNAs. Neurodegenerative diseases may possess a wide variety of phenotypes, depending on the neurons that degenerate on occasion. Interestingly, an increasing amount of evidence has indicated that m6A modification could modulate the expression of autophagy-related genes and promote autophagy in neuronal cells. Oxidative stresses such as reactive oxygen species (ROS) could stimulate the m6A RNA methylation, which may also be related to the regulation of autophagy and/or the development of neurodegenerative diseases. Both m6A modification and autophagy could also play critical roles in regulating the health condition of neurons. Therefore, a comprehensive understanding of the m6A and autophagy relationship in human diseases may benefit in developing therapeutic strategies in the future. This paper reviews advances in the understanding of the regulatory mechanisms of m6A modification in the occurrence and development of neurodegenerative diseases and/or aging, discussing the possible therapeutic procedures related to mechanisms of m6A RNA methylation and autophagy. Full article
(This article belongs to the Collection Advances in Neurodegenerative Diseases)
Show Figures

Figure 1

Article
Modified TPP-MoS2 QD Blend as a Bio-Functional Model for Normalizing Microglial Dysfunction in Alzheimer’s Disease
Neurol. Int. 2023, 15(3), 954-966; https://doi.org/10.3390/neurolint15030061 - 08 Aug 2023
Viewed by 385
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease of old age. Accumulation of β-amyloid peptide (Aβ) and mitochondrial dysfunction results in chronic microglial activation, which enhances neuroinflammation and promotes neurodegeneration. Microglia are resident macrophages of the brain and spinal cord which play [...] Read more.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease of old age. Accumulation of β-amyloid peptide (Aβ) and mitochondrial dysfunction results in chronic microglial activation, which enhances neuroinflammation and promotes neurodegeneration. Microglia are resident macrophages of the brain and spinal cord which play an important role in maintaining brain homeostasis through a variety of phenotypes, including the pro-inflammatory phenotype and anti-inflammatory phenotypes. However, persistently activated microglial cells generate reactive species and neurotoxic mediators. Therefore, inhibitors of microglial activation are seen to have promise in AD control. The modified TPP/MoS2 QD blend is a mitochondrion-targeted nanomaterial that exhibits cytoprotective activities and antioxidant properties through scavenging free radicals. In the present study, the cell viability and cytotoxicity of the DSPE-PEG-TPP/MoS2 QD blend on microglial cells stimulated by Aβ were investigated. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were also assessed. In addition, pro-inflammatory and anti-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), transforming growth factor beta (TGF-β), inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-I) were measured in the presence or absence of the DSPE-PEG-TPP/MoS2 QD blend on an immortalized microglia cells activated by accumulation of Aβ. We found that the DSPE-PEG-TPP/MoS2 QD blend was biocompatible and nontoxic at specific concentrations. Furthermore, the modified TPP/MoS2 QD blend significantly reduced the release of free radicals and improved the mitochondrial function through the upregulation of MMP in a dose-dependent manner on microglial cells treated with Aβ. In addition, pre-treatment of microglia with the DSPE-PEG-TPP/MoS2 QD blend at concentrations of 25 and 50 μg/mL prior to Aβ stimulation significantly inhibited the release and expression of pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, and iNOS. Nevertheless, the anti-inflammatory cytokines TGF-β and Arg-I were activated. These findings suggest that the modified TPP/MoS2 QD blend reduced oxidative stress, inflammation and improved the mitochondrial function in the immortalized microglial cells (IMG) activated by Aβ. Overall, our research shows that the DSPE-PEG-TPP/MoS2 QD blend has therapeutic promise for managing AD and can impact microglia polarization. Full article
(This article belongs to the Collection Advances in Neurodegenerative Diseases)
Show Figures

Figure 1

Systematic Review
Investigating the Predictive Value of Thyroid Hormone Levels for Stroke Prognosis
Neurol. Int. 2023, 15(3), 926-953; https://doi.org/10.3390/neurolint15030060 - 02 Aug 2023
Viewed by 432
Abstract
Given the expansion of life expectancy, the aging of the population, and the anticipated rise in the number of stroke survivors in Europe with severe neurological consequences in the coming decades, stroke is becoming the most prevalent cause of functional disability. Therefore, the [...] Read more.
Given the expansion of life expectancy, the aging of the population, and the anticipated rise in the number of stroke survivors in Europe with severe neurological consequences in the coming decades, stroke is becoming the most prevalent cause of functional disability. Therefore, the prognosis for a stroke must be timely and precise. Two databases (MEDLINE and Scopus) were searched to identify all relevant studies published between 1 January 2005 and 31 December 2022 that investigated the relationship between thyroid hormone levels and acute stroke severity, mortality, and post-hospital prognosis. Only full-text English-language articles were included. This review includes Thirty articles that were traced and incorporated into the present review. Emerging data regarding the potential predictive value of thyroid hormone levels suggests there may be a correlation between low T3 syndrome, subclinical hypothyroidism, and poor stroke outcome, especially in certain age groups. These findings may prove useful for rehabilitation and therapy planning in clinical practice. Serum thyroid hormone concentration measurement is a non-invasive, relatively harmless, and secure screening test that may be useful for this purpose. Full article
Show Figures

Figure 1

Case Report
Cerebellar Progressive Multifocal Leukoencephalopathy Mimicking Anti-Yo-Antibody-Associated Rapidly Progressive Cerebellar Syndrome
Neurol. Int. 2023, 15(3), 917-925; https://doi.org/10.3390/neurolint15030059 - 26 Jul 2023
Viewed by 390
Abstract
A 58-year-old woman with a history of systemic lupus erythematosus (SLE) who was taking prednisolone and mycophenolate mofetil presented with gait disturbances that progressively worsened over a period of 3 months. Her blood test and cerebrospinal fluid (CSF) examination results did not indicate [...] Read more.
A 58-year-old woman with a history of systemic lupus erythematosus (SLE) who was taking prednisolone and mycophenolate mofetil presented with gait disturbances that progressively worsened over a period of 3 months. Her blood test and cerebrospinal fluid (CSF) examination results did not indicate active SLE. Initial brain magnetic resonance imaging (MRI) revealed a small spotty lesion in the left cerebellar peduncle. The clinical course was consistent with rapidly progressive cerebellar syndrome (RPCS), which sometimes involves neuronal antibodies. The line blot assay detected anti-Yo antibodies, but no malignancy was found. Immunohistological techniques using rat brain sections yielded a negative result for anti-Yo antibodies. The second MRI revealed a focal lesion and surrounding spotty lesion in the left cerebellar peduncle, which was consistent with the punctate pattern observed in progressive multifocal leukoencephalopathy (PML). The CSF JCV-DNA test indicated the presence of cerebellar PML. Immunosuppressants were reduced, and mefloquine and mirtazapine were initiated. After approximately 2 years and 1 month, the CSF JCV-DNA results became negative. Cerebellar PML may exhibit a clinical course that is consistent with RPCS. The punctate pattern should be recognized as an early manifestation of PML. The CSF JCV-DNA copy number may serve as a useful indicator of PML stabilization. Full article
Show Figures

Figure 1

Case Report
Persistent 18F-FDG Brain PET Fronto-Temporal Hypometabolism and Cognitive Symptoms Two Years after SARS-CoV-2 Infection: A Case Report
Neurol. Int. 2023, 15(3), 908-916; https://doi.org/10.3390/neurolint15030058 - 25 Jul 2023
Viewed by 638
Abstract
At least 10% of patients experience persistent symptoms after SARS-CoV-2 infection, a condition referred to as post-acute COVID-19, post-acute sequelae of SARS-CoV-2 infection (PASC), long COVID, long-haul COVID, long-term effects of COVID, post-COVID-19 and chronic COVID. In this report, we describe a case [...] Read more.
At least 10% of patients experience persistent symptoms after SARS-CoV-2 infection, a condition referred to as post-acute COVID-19, post-acute sequelae of SARS-CoV-2 infection (PASC), long COVID, long-haul COVID, long-term effects of COVID, post-COVID-19 and chronic COVID. In this report, we describe a case of persistent cognitive deficits developed after SARS-CoV-2 infection in a 40-year-old woman with a family history of early-onset Alzheimer’s disease (EOAD) since her father was diagnosed with EOAD at the age of 50. We describe the clinical picture and workup, with special emphasis on the alterations of brain glucose metabolism evidenced by 18-fluoro-deoxy-glucose positron emission tomography (FDG-PET), which could be considered a useful marker of the presence and persistence of cognitive deficits. Full article
(This article belongs to the Special Issue COVID-19, Neuroinflammation and Therapeutics)
Show Figures

Figure 1

Article
3D Imaging of Striatal Transplants in a Small Animal Model of Huntington’s Disease
Neurol. Int. 2023, 15(3), 896-907; https://doi.org/10.3390/neurolint15030057 - 24 Jul 2023
Viewed by 443
Abstract
High-resolution imaging in small animal models of neurologic disease is a technical challenge. In a pilot project, we have explored a non-destructive synchrotron imaging technique for the 3D visualization of intracerebral tissue transplants in a well-established small animal model of Huntington’s disease. Four [...] Read more.
High-resolution imaging in small animal models of neurologic disease is a technical challenge. In a pilot project, we have explored a non-destructive synchrotron imaging technique for the 3D visualization of intracerebral tissue transplants in a well-established small animal model of Huntington’s disease. Four adult female Sprague Dawley rats each received injections of 0.12 M quinolinic acid (QA) into two target positions in the left striatum, thus creating unilateral left-sided striatal lesions similar to those frequently seen in patients suffering from Huntington’s disease. One week after lesioning, the animals received transplants prepared from whole ganglionic eminences (wGEs) obtained from 13- to 14-day-old rat embryos. Of the four lesioned animals, three received transplants of GNP-loaded cells and one animal received a transplant of naïve cells, serving as control. Post-mortem synchrotron-based microCT was used to obtain images of the neurotransplants. The images obtained of GNP-loaded tissue transplants at the synchrotron corresponded in size and shape to the histological images of transplants developed from naïve cells. Thus, we conclude that non-destructive synchrotron imaging techniques such as phase-contrast imaging are suitable to obtain high-resolution images of GNP-loaded tissue transplants. Full article
(This article belongs to the Topic Animal Model in Biomedical Research, 2nd Volume)
Show Figures

Figure 1

Review
COVID-19 Biomarkers for Critically Ill Patients: A Compendium for the Physician
Neurol. Int. 2023, 15(3), 881-895; https://doi.org/10.3390/neurolint15030056 - 23 Jul 2023
Viewed by 511
Abstract
Background: SARS-CoV-2 clinical manifestation and progression are variable and unpredictable, hence the importance of considering biomarkers in clinical practice that can be useful for both diagnosis and prognostic evaluation. This review aims to summarize, for intensive care physicians, the most recent state of [...] Read more.
Background: SARS-CoV-2 clinical manifestation and progression are variable and unpredictable, hence the importance of considering biomarkers in clinical practice that can be useful for both diagnosis and prognostic evaluation. This review aims to summarize, for intensive care physicians, the most recent state of knowledge regarding known COVID-19 in critical patients. We searched PubMed® using the Boolean operators and identified all results on the PubMed® database of all studies regarding COVID-19 biomarkers. We selected studies regarding endothelium, cytokines, bacterial infection, coagulation, and cardiovascular biomarkers. Methods: We divided the results into four essential paragraphs: “Cytokine storm”, “Endothelium dysfunction and coagulation biomarkers in COVID-19”, “Biomarker of sepsis”, and Cardiovascular lung and new perspectives. Results: The assessments of the severe COVID-19 prognosis should monitor, over time, IL-6, soluble Von Willebrand factor (VWF), P-selectin, sCD40L, thrombomodulin, VCAM-1, endothelin- Troponin, D-dimer, LDH, CRP, and procalcitonin. Metabolomic alterations and ACE2 receptors represent new perspectives. Discussion and Conclusions: Early identification of critically ill patients has been crucial in the first COVID-19 pandemic wave for the sustainability of the healthcare emergency system and clinical management. Only through the early identification of the most severe patients can they be provided with the most appropriate treatments. Full article
(This article belongs to the Special Issue COVID-19, Neuroinflammation and Therapeutics)
Show Figures

Figure 1

Article
Microbiota and Mitochondrial Sex-Dependent Imbalance in Fibromyalgia: A Pilot Descriptive Study
Neurol. Int. 2023, 15(3), 868-880; https://doi.org/10.3390/neurolint15030055 - 12 Jul 2023
Viewed by 564
Abstract
Fibromyalgia is a widespread chronic condition characterized by pain and fatigue. Among the long list of physiological disturbances linked to this syndrome, mitochondrial imbalance and oxidative stress stand out. Recently, the crosstalk between mitochondria and intestinal microbiota has caught the attention of biomedical [...] Read more.
Fibromyalgia is a widespread chronic condition characterized by pain and fatigue. Among the long list of physiological disturbances linked to this syndrome, mitochondrial imbalance and oxidative stress stand out. Recently, the crosstalk between mitochondria and intestinal microbiota has caught the attention of biomedical researchers, who have found connections between this axis and several inflammatory and pain-related conditions. Hence, this pilot descriptive study focused on characterizing the mitochondrial mass/mitophagy ratio and total antioxidant capacity in PBMCs, as well as some microbiota components in feces, from a Peruvian cohort of 19 females and 7 males with FM. Through Western blotting, electrochemical oxidation, ELISA, and real-time qPCR, we determined VDAC1 and MAP1LC3B protein levels; total antioxidant capacity; secretory immunoglobulin A (sIgA) levels; and Firmicutes/Bacteroidetes, Bacteroides/Prevotella, and Roseburia/Eubacterium ratios; as well as Ruminococcus spp., Pseudomonas spp., and Akkermansia muciniphila levels, respectively. We found statistically significant differences in Ruminococcus spp. and Pseudomonas spp. levels between females and males, as well as a marked polarization in mitochondrial mass in both groups. Taken together, our results point to a mitochondrial imbalance in FM patients, as well as a sex-dependent difference in intestinal microbiota composition. Full article
Show Figures

Graphical abstract

Opinion
Illustrated Neuropathologic Diagnosis of Alzheimer’s Disease
Neurol. Int. 2023, 15(3), 857-867; https://doi.org/10.3390/neurolint15030054 - 12 Jul 2023
Viewed by 453
Abstract
As of 2022, the prevalence of Alzheimer’s disease (AD) among individuals aged 65 and older is estimated to be 6.2 million in the United States. This figure is predicted to grow to 13.8 million by 2060. An accurate assessment of neuropathologic changes represents [...] Read more.
As of 2022, the prevalence of Alzheimer’s disease (AD) among individuals aged 65 and older is estimated to be 6.2 million in the United States. This figure is predicted to grow to 13.8 million by 2060. An accurate assessment of neuropathologic changes represents a critical step in understanding the underlying mechanisms in AD. The current method for assessing postmortem Alzheimer’s disease neuropathologic change follows version 11 of the National Alzheimer’s Coordinating Center (NACC) coding guidebook. Ambiguity regarding steps in the ABC scoring method can lead to increased time or inaccuracy in staging AD. We present a concise overview of how this postmortem diagnosis is made and relate it to the evolving understanding of antemortem AD biomarkers. Full article
Show Figures

Figure 1

Back to TopTop