Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Journal = Agrochemicals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Regulatory Evolution of Neonicotinoid Insecticides as Plant Protection Active Substances in Europe
Agrochemicals 2023, 2(3), 446-457; https://doi.org/10.3390/agrochemicals2030025 - 31 Aug 2023
Viewed by 113
Abstract
Neonicotinoid (NN) insecticides derived from natural insecticide nicotine are EU chemical crop protection systemic active substances that are controversial regarding their toxicity and ecotoxicity, especially versus pollinators and birds. Clearly, the last European evaluation by the European Food Safety Authority exhibited a danger [...] Read more.
Neonicotinoid (NN) insecticides derived from natural insecticide nicotine are EU chemical crop protection systemic active substances that are controversial regarding their toxicity and ecotoxicity, especially versus pollinators and birds. Clearly, the last European evaluation by the European Food Safety Authority exhibited a danger to wild and managed bees. Concomitantly, the decline in birds was partially attributed to this class of substances, which constitutes a family in itself, both in Europe and the USA. At the regulatory level, following the initial approval waves in 2011 and 2019, and mainly taking into account these ecotoxicological considerations, the commission banned the use of three NN insecticides in 2013 (imidacloprid, clothianidin, and thiamethoxam), and later, only one NN (acetamiprid) was renewed. Four NN approvals were removed by the end of approval or non-renewal in 2019 and 2020, and two are currently concerns for renewals in 2025, even if extensions of the approval durations of these NNs are to be expected due to the current slowness of the renewal procedure. Therefore, from the total number (17) of NN insecticide molecules known all over the world, up to seven NN were approved by the EU plant protection Regulation EC 1107/2009 between 2011 and now. All of these active substances are listed in Parts A and B of Regulation EU 540/2011 managing active substances. The regulatory evolution of these agrochemicals is analysed in this work, from the corresponding global modifications in terms of the number of active substances, employment, functions, uses covered, protected crops, and maximum residue limits. We also analysed their ability to persist as an agrochemical family and the potential of the inclusion of new NN members together with their current restrictions during their active substance life in Europe. Full article
Show Figures

Figure 1

Article
Seed Germination and Plant Growth under Drought Stress of Herbicide-Resistant and Herbicide-Susceptible Biotypes of Conyza Species and Smart Farming Approaches
Agrochemicals 2023, 2(3), 436-445; https://doi.org/10.3390/agrochemicals2030024 - 01 Aug 2023
Viewed by 288
Abstract
Horseweed (C. canadensis) and fleabane (C. sumatrensis) are two annual or perennial herbaceous weeds present with high frequency and density in many parts of the world. Their response to water deficit was studied by means of seed germination tests [...] Read more.
Horseweed (C. canadensis) and fleabane (C. sumatrensis) are two annual or perennial herbaceous weeds present with high frequency and density in many parts of the world. Their response to water deficit was studied by means of seed germination tests and pot experiments. Seed germination was tested in solutions with different concentrations of polyethylene glycol (PEG). Two biotypes of each species were examined, one glyphosate resistant and the other susceptible. Growth responses were similar in the two species, both being more affected by lower (−1 MPa) than higher water potential (−0.2 MPa). The results revealed a significant effect of the biotype and the weed species on the drought stress response and adaptation. When high PEG concentrations were applied (−0.6 MPa), both C. sumatrensis biotypes had higher germination percentages (up to 88%) than the C. canadensis biotypes, while in most cases the seeds of the resistant biotypes germinated more (up to 72%) compared to the susceptible ones. These findings were confirmed by means of NDVI values, indicating that remote sensing can be used for a quick evaluation of the drought stress response of these weeds. The results obtained highlight the significant effect of species, biotypes and drought stress level on the germination, survival and growth of the weeds. Full article
(This article belongs to the Section Herbicides)
Show Figures

Figure 1

Article
Evaluation of the Results of Pesticide Residue Analysis in Food Sampled between 2017 and 2021
Agrochemicals 2023, 2(3), 409-435; https://doi.org/10.3390/agrochemicals2030023 - 27 Jul 2023
Viewed by 315
Abstract
As mandated by the EU and the national risk management duties, pesticide residues were determined by four specialized laboratories in 9924 samples taken from 119 crops of economic importance in Hungary and imported foodstuffs during 2017–2021. The screening method applied covered 622 pesticide [...] Read more.
As mandated by the EU and the national risk management duties, pesticide residues were determined by four specialized laboratories in 9924 samples taken from 119 crops of economic importance in Hungary and imported foodstuffs during 2017–2021. The screening method applied covered 622 pesticide residues as defined for enforcement purposes. The limit of detection ranged between 0.002 and 0.008 mg/kg. The 1.0% violation rate concerning all commodities was lower than in the European Union. No residue was detectable in 45.9% of the samples. For detailed analyses, six commodities (apple, cherry, grape, nectarine/peach, sweet peppers, and strawberry) were selected as they were analyzed in over 195 samples and most frequently contained residues. Besides testing their conformity with national MRLs, applying 0.3 MRL action limits for pre-export control, we found that 73% of the sampled lots would be compliant with ≥90% probability based on a second independent sampling. Multiple residues (2–23) in one sample were detected in 36–50% of the tested lots. Considering the provisions of integrated pest management, and the major pests and diseases of selected crops, normally three to four and exceptionally, seven to nine active ingredients with different modes of action should suffice for their effective and economic protection within four weeks before harvest. Full article
(This article belongs to the Section Pesticides)
Show Figures

Figure 1

Review
The Herbicide Glyphosate and Its Formulations Impact Animal Behavior across Taxa
Agrochemicals 2023, 2(3), 367-408; https://doi.org/10.3390/agrochemicals2030022 - 10 Jul 2023
Viewed by 1272
Abstract
Use of glyphosate and glyphosate-based herbicides is ubiquitous in US agriculture and widespread around the world. Despite marketing efforts to the contrary, numerous studies demonstrate glyphosate toxicity to non-target organisms including animals, primarily focusing on mortality, carcinogenicity, renal toxicity, reproductive, and neurological toxicity, [...] Read more.
Use of glyphosate and glyphosate-based herbicides is ubiquitous in US agriculture and widespread around the world. Despite marketing efforts to the contrary, numerous studies demonstrate glyphosate toxicity to non-target organisms including animals, primarily focusing on mortality, carcinogenicity, renal toxicity, reproductive, and neurological toxicity, and the biochemical mechanisms underlying these physiological outcomes. Glyphosate toxicity also impacts animal behavior, both in model systems and in agricultural and environmentally relevant contexts. In this review, we examine the effects of glyphosate and glyphosate-based herbicides on animal behaviors, particularly activity, foraging and feeding, anti-predator behavior, reproductive behaviors, learning and memory, and social behaviors. Glyphosate can be detected both in food and in the environment, and avoided through activity and feeding strategies. However, exposure also reduces activity, depresses foraging and feeding, increases susceptibility to predation, interferes with courtship, mating, fertility and maternal behaviors, decreases learning and memory capabilities, and disrupts social behaviors. Changes in animal behavior as a result of glyphosate toxicity are important because of their sometimes severe effects on individual fitness, as well as ecosystem health. Implications for human behavior are also considered. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the Inaugural Issue of Agrochemicals)
Show Figures

Figure 1

Article
Cyclic Organic Peroxides as New Fungicides against Phytopathogenic Fungi
Agrochemicals 2023, 2(3), 355-366; https://doi.org/10.3390/agrochemicals2030021 - 28 Jun 2023
Viewed by 416
Abstract
The search for new classes of fungicides has long been important in plant protection due to the development of fungal resistance to currently used agrochemicals. Organic peroxides have long been regarded as exotic and unstable compounds. The discovery of the antimalarial activity of [...] Read more.
The search for new classes of fungicides has long been important in plant protection due to the development of fungal resistance to currently used agrochemicals. Organic peroxides have long been regarded as exotic and unstable compounds. The discovery of the antimalarial activity of the peroxide natural product Artemisinin, an achievement that was recently recognized with the Nobel Prize, has brought organic peroxides into the medicinal and agrochemistry. In this paper, fungicidal activity of synthesized organic peroxides—geminal bishydroperoxide, bridged 1,2,4,5-tetraoxanes, and tricyclic monoperoxides—were tested in vitro against an important species of phytopathogenic fungi (F. culmorum, R. solani, A. solani, P. infestans, C. coccodes). We discovered that substituted bridged 1,2,4,5-tetraoxanes exhibit fungicidal activity comparable or superior to azoxystrobin and superior to geminal bishydroperoxide and tricyclic monoperoxides. The contact mode of action was demonstrated for the bridged 1,2,4,5-tetraoxane. Full article
(This article belongs to the Section Fungicides and Bactericides)
Show Figures

Figure 1

Review
Effects of Pesticides on the Arbuscular Mycorrhizal Symbiosis
Agrochemicals 2023, 2(2), 337-354; https://doi.org/10.3390/agrochemicals2020020 - 14 Jun 2023
Viewed by 897
Abstract
Substantial amounts of pesticides, used in agricultural production to control pests, diseases, and weeds, and thereby attain high product quantities and quality, can severely affect the ecosystem and human health. The amounts of pesticides used depend on the specifics of the current production [...] Read more.
Substantial amounts of pesticides, used in agricultural production to control pests, diseases, and weeds, and thereby attain high product quantities and quality, can severely affect the ecosystem and human health. The amounts of pesticides used depend on the specifics of the current production system but also exhibit large effects of past practices. Pesticides do not act only on the target organisms but also on organisms for which the chemicals were not specifically formulated, constituting hazardous molecules for humans and the environment. Pesticides, therefore, also influence soil microbial communities including organisms that engage in mutualistic plant symbioses that play a crucial role in its mineral nutrition, such as arbuscular mycorrhizal fungi. In this review, we summarize the current knowledge on the effects of synthetic and natural (‘green’) pesticides (fungicides, herbicides, and insecticides) on arbuscular mycorrhizal symbiosis. We deal with both the direct effects (spore germination and extraradical and intraradical growth of the mycelium) and indirect effects on the agroecosystem level. Such indirect effects include effects through the spread of herbicide-resistant crops and weeds to neighboring ecosystems, thereby modifying the mycorrhizal inoculum potential and altering the plant–plant interactions. We also briefly discuss the possibility that mycorrhizal plants can be used to enhance the phytoremediation of organic pesticides. Full article
(This article belongs to the Section Pesticides)
Show Figures

Figure 1

Review
Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability
Agrochemicals 2023, 2(2), 296-336; https://doi.org/10.3390/agrochemicals2020019 - 09 Jun 2023
Viewed by 2439
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive [...] Read more.
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment. Full article
(This article belongs to the Special Issue Nano-Agrochemicals)
Show Figures

Figure 1

Article
Neonicotinoid Sunflower Seed Treatment, While Not Detected in Pollen and Nectar, Still Impacts Wild Bees and Crop Yield
Agrochemicals 2023, 2(2), 279-295; https://doi.org/10.3390/agrochemicals2020018 - 06 Jun 2023
Viewed by 903
Abstract
Neonicotinoid seed treatments are commonly used in agricultural production even though their benefit to crop yield and their impact on pollinators, particularly wild bees, remains unclear. Using an on-farm matched pair design in which half of each field was sown with thiamethoxam treated [...] Read more.
Neonicotinoid seed treatments are commonly used in agricultural production even though their benefit to crop yield and their impact on pollinators, particularly wild bees, remains unclear. Using an on-farm matched pair design in which half of each field was sown with thiamethoxam treated seed and half without, we assessed honey bee and wild bee exposure to pesticides in sunflower fields by analyzing pesticide residues in field soil, sunflower pollen and nectar, pollen-foraging and nectar-foraging honey bees, and a sunflower specialist wild bee (Melissodes agilis). We also quantified the effects of thiamethoxam-treated seed on wild bee biodiversity and crop yield. M. agilis abundance was significantly lower with thiamethoxam treatment and overall wild bee abundance trending lower but was not significantly different. Furthermore, crop yield was significantly lower in plots with thiamethoxam treatment, even though thiamethoxam was only detected at low concentrations in one soil sample (and its primary metabolite, clothianidin, was never detected). Conversely, wild bee richness was significantly higher and diversity was marginally higher with thiamethoxam treatment. Nectar volumes harvested from the nectar-foraging honey bees were also significantly higher with thiamethoxam treatment. Several pesticides that were not used in the sunflower fields were detected in our samples, some of which are known to be deleterious to bee health, highlighting the importance of the landscape scale in the assessment of pesticide exposure for bees. Overall, our results suggest that thiamethoxam seed treatments may negatively impact wild bee pollination services in sunflower. Importantly, this study highlights the advantages of the inclusion of other metrics, such as biodiversity or behavior, in pesticide risk analysis, as pesticide residue analysis, as an independent metric, may erroneously miss the impacts of field realistic pesticide exposure on bees. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the Inaugural Issue of Agrochemicals)
Show Figures

Figure 1

Review
Nanofertilizers: The Next Generation of Agrochemicals for Long-Term Impact on Sustainability in Farming Systems
Agrochemicals 2023, 2(2), 257-278; https://doi.org/10.3390/agrochemicals2020017 - 05 Jun 2023
Viewed by 1128
Abstract
The microflora of the soil is adversely affected by chemical fertilizers. Excessive use of chemical fertilizers has increased crop yield dramatically at the cost of soil vigor. The pH of the soil is temporarily changed by chemical fertilizers, which kill the beneficial soil [...] Read more.
The microflora of the soil is adversely affected by chemical fertilizers. Excessive use of chemical fertilizers has increased crop yield dramatically at the cost of soil vigor. The pH of the soil is temporarily changed by chemical fertilizers, which kill the beneficial soil microflora and can cause absorption stress on crop plants. This leads to higher dosages during the application, causing groundwater leaching and environmental toxicity. Nanofertilizers (NFs) reduce the quantity of fertilizer needed in agriculture, enhance nutrient uptake efficiency, and decrease fertilizer loss due to runoff and leaching. Moreover, NFs can be used for soil or foliar applications and have shown promising results in a variety of plant species. The main constituents of nanomaterials are micro- and macronutrient precursors and their properties at the nanoscale. Innovative approaches to their application as a growth promoter for crops, their modes of application, and the mechanism of absorption in plant tissues are reviewed in this article. In addition, the review analyzes potential shortcomings and future considerations for the commercial agricultural application of NFs. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

Review
Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects
Agrochemicals 2023, 2(2), 220-256; https://doi.org/10.3390/agrochemicals2020016 - 31 May 2023
Viewed by 1472
Abstract
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along [...] Read more.
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along with the alleviation of biotic and abiotic stress. Further, nanotechnology-based fertilizers and pesticides can be delivered in lower dosages, which reduces environmental impacts and human health hazards. Another significant advantage lies in introducing cutting-edge nanodiagnostic systems and nanobiosensors that monitor soil quality parameters, plant diseases, and stress, all of which are critical for precision agriculture. Additionally, this technology has demonstrated potential in reducing agro-waste, synthesizing high-value products, and using methods and devices for tagging, monitoring, and tracking agroproducts. Alongside these developments, cloud computing and smartphone-based biosensors have emerged as crucial data collection and analysis tools. Finally, this review delves into the economic, legal, social, and risk implications of nanotechnology in agriculture, which must be thoroughly examined for the technology’s widespread adoption. Full article
(This article belongs to the Special Issue Nano-Agrochemicals)
Show Figures

Figure 1

Article
Sydnone Imines: A Novel Class of Plant Growth Regulators
Agrochemicals 2023, 2(2), 203-219; https://doi.org/10.3390/agrochemicals2020015 - 18 May 2023
Viewed by 589
Abstract
An increase in the yield of the main cereal crops in the context of global climate changes requires additional impacts on plants. Natural and synthetic plant growth regulators (PGRs) are used to increase plant productivity and reduce the injury level caused by abiotic [...] Read more.
An increase in the yield of the main cereal crops in the context of global climate changes requires additional impacts on plants. Natural and synthetic plant growth regulators (PGRs) are used to increase plant productivity and reduce the injury level caused by abiotic stressors. There is a growing need for novel highly effective plant growth stimulants to exhibit their effects at low doses and to not pose an environmental threat or injury to the crop quality. The derivatives of sydnone imine (SI), a mesoionic heterocycle possessing a 1,2,3-oxadiazole core, have been used as medicines until now but have not been used for agricultural applications. Some SI derivatives have recently been found to exhibit PGR properties. Herein, we report on the study of the PGR potential of nine SI derivatives bearing variable substituents at N(3), C(4), and N6 positions of the heterocycle designed to disclose the “molecular structure-PGR activity” relationship in this family. The SI derivatives were used in a wide concentration range (10−9–10−4 mol/L) for a pre-sowing treatment of winter wheat (Triticum aestivum L., two cultivars) and maize (Zea mays L., two hybrids) seeds in germinating experiments. All compounds were found to affect the growth of the axial organs of germinants, with the growth-stimulating or -inhibitory effect as well as its rate being considerably different for wheat and maize and, in many cases, also for roots and shoots. In addition, a pronounced concentration dependence of the effect was disclosed for many cases. The features of the molecular structure of SIs affecting their growth-regulating properties were elucidated. Compounds 4, 6, 7, and 8, which had exhibited a growth-promoting effect in germinating experiments, were used at appropriate concentrations for pot experiments on the same crops. For all compounds, the experiments showed a stimulating effect on the growth of roots (up to 80%), shoots (up to 112%), leaf area (up to 113%), fresh weights of roots (up to 83%), and aerial parts of the plants (up to 87%) or only on some of these parameters. The obtained results show a healthy outlook for the use of SI derivatives as promoting agents for improving the growth of cereal crop plants. Full article
Show Figures

Figure 1

Article
Influence of Chemical Control on the Floristic Composition of Weeds in the Initial and Pre-Harvest Development Stages of the Sunflower Crop
Agrochemicals 2023, 2(2), 193-202; https://doi.org/10.3390/agrochemicals2020014 - 15 May 2023
Cited by 1 | Viewed by 578
Abstract
The presence of weeds in the sunflower crop is one of the main factors linked to the low increase in productivity of this crop, and to determine the most appropriate management of weeds, it is essential to carry out a diagnosis through the [...] Read more.
The presence of weeds in the sunflower crop is one of the main factors linked to the low increase in productivity of this crop, and to determine the most appropriate management of weeds, it is essential to carry out a diagnosis through the phytosociological survey. The objective of this study was to assess the influence of chemical control on the phytosociological community of weeds in three areas cultivated with sunflower in the Parecis region (Brazil). The areas were treated with 2,4-D + glyphosate for desiccation; S-metolachlor was used for pre-emergence control in the three areas; meanwhile, sulfentrazone and flumioxazin were applied only in one area; and, finally, clethodim was applied for post-emergence weed management. Sampling was carried out at two different times, in the initial and pre-harvest stages (at 35 and 100 days after the emergence of the crop, respectively), using a quadrate, in which weeds were identified and quantified to determine the frequency, relative frequency, density, relative density, abundance, relative abundance, importance index, and similarity index between areas and times. Seventeen weed species were found in the sunflower crop (70.6% dicot and 29.4% monocotyledonous) in the two seasons, grouped into nine botanical families, with Poaceae being the most diverse family. The dicots Tridax procumbens and Acanthospermum hispidium were present in low frequency only in the initial stages of development of the sunflower crop. The weeds with the highest importance index values in the initial and pre-harvest stages were Euphorbia hirta (104 and 91%) and Bidens pilosa (45 and 66%, respectively), both belonging to the dicots group. These two species were present in the two evaluated periods and in the three experimental areas, demonstrating that there was a similarity index between them with values above 93%. These results of the phytosociological study may contribute to determining more efficient management strategies for weed chemical control in the sunflower crop. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the Inaugural Issue of Agrochemicals)
Show Figures

Figure 1

Article
Fungicide Scent Pollution Disrupts Floral Search-and-Selection in the Bumblebee Bombus impatiens
Agrochemicals 2023, 2(2), 181-192; https://doi.org/10.3390/agrochemicals2020013 - 18 Apr 2023
Viewed by 916
Abstract
Bumblebees are valuable generalist pollinators. However, micro- and macro-stressors on bumblebees negatively impact both foraging efficiency and pollination efficacy. Given that colonies have a resource threshold for successful reproduction, factors that decrease foraging efficiency could negatively impact conservation efforts. Recently, agrochemical odor pollution [...] Read more.
Bumblebees are valuable generalist pollinators. However, micro- and macro-stressors on bumblebees negatively impact both foraging efficiency and pollination efficacy. Given that colonies have a resource threshold for successful reproduction, factors that decrease foraging efficiency could negatively impact conservation efforts. Recently, agrochemical odor pollution has been shown to hinder floral odor learning and recognition in Bombus impatiens via an associative odor learning assay (FMPER). These results may have implications for the field foraging behavior of bumblebees. Building on this prior work, our study aimed to determine if negative effects of fungicides on associative odor learning and recognition scale up to negative impacts on actively foraging bumblebees. These experiments investigated whether the presence of a background fungicide odor (Reliant® Systemic Fungicide) impacts the location of a learned floral resource (lily of the valley-scented blue flowers) in a wind tunnel. Experiments were run with and without early access to visual cues to determine if fungicide odor pollution is more impactful on bees that are engaged in olfactory versus visual navigation. Fungicide odor pollution reduced landing frequency in both paradigms. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the Inaugural Issue of Agrochemicals)
Show Figures

Figure 1

Article
Multiple Pesticide Resistance in Rust-Red Flour Beetle (Tribolium castaneum, Herbst 1797) from Northern Nigeria Is Probably Driven by Metabolic Mechanisms
Agrochemicals 2023, 2(2), 170-180; https://doi.org/10.3390/agrochemicals2020012 - 06 Apr 2023
Viewed by 1106
Abstract
There is a severe lack of information about molecular mechanisms of pesticide resistance in the rust-red flour beetle, a major pest destroying grains and flour across Nigeria, hindering evidence-based control. Here, we identified to the species level three populations of the red flour [...] Read more.
There is a severe lack of information about molecular mechanisms of pesticide resistance in the rust-red flour beetle, a major pest destroying grains and flour across Nigeria, hindering evidence-based control. Here, we identified to the species level three populations of the red flour beetle from Kano, Nigeria, as Tribolium castaneum (Herbst 1797) and investigated the mechanism driving their insecticide resistance. The IRAC susceptibility bioassays established cypermethrin resistance, with LC50s of 4.35–5.46 mg/mL in the three populations, NNFM, R/Zaki and Yankaba. DDT and malathion resistance were observed in NNFM, with LC50s of 15.32 mg/mL and 3.71 mg/mL, respectively. High susceptibility was observed towards dichlorvos in all three populations with LC50s of 0.17–0.35 mg/mL. The synergist bioassay with piperonylbutoxide significantly restored cypermethrin susceptibility, with mortality increasing almost threefold, from 24.8% obtained with 1.5 mg/mL of cypermethrin to 63.3% in the synergised group (p = 0.013), suggesting a preeminent role of P450s. The two major knockdown resistance (kdr) mutations, T929I and L1014F, in the IIS4 and IIS6 fragments of the voltage-gated sodium channel were not detected in both cypermethrin-alive and cypermethrin-dead beetles, suggesting a lesser role of target-site insensitivity mechanisms. These findings highlight the need to explore alternative control tools for this pest and/or utilise synergists, such as piperonyl butoxide, as additional chemistries in pesticide formulations to improve their efficacy. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the Inaugural Issue of Agrochemicals)
Show Figures

Figure 1

Article
Practical Knowledge of Injuries Caused by Simulated Herbicide Drift in Young Tomato Plants
Agrochemicals 2023, 2(1), 150-169; https://doi.org/10.3390/agrochemicals2010011 - 16 Mar 2023
Viewed by 1060
Abstract
Tomatoes are often grown in proximity to other crops such as grain, which can increase their susceptibility to herbicide drift and subsequent crop. Therefore, the objective of this study was to evaluate the effect of simulated herbicide drift on tomato plants. Treatments were [...] Read more.
Tomatoes are often grown in proximity to other crops such as grain, which can increase their susceptibility to herbicide drift and subsequent crop. Therefore, the objective of this study was to evaluate the effect of simulated herbicide drift on tomato plants. Treatments were established in a 10 × 3 + 1 factorial scheme using a completely randomized design with four replications. The first factor consisted of ten herbicides, while the second was composed by three subdoses (1/4, 1/16, and 1/32) along with an additional treatment without herbicide application. The herbicides 2,4-D, dicamba, glyphosate, saflufenacil, oxyfluorfen, and isoxaflutole caused injury levels greater than 20% or reductions in plant biomass greater than 30% at the lowest subdose. Increasing the subdose resulted in a corresponding increase in injury level and a reduction in biomass. Tomato exposed to hexazinone, diuron, nicosulfuron, and diquat at a subdose of 1/64 exhibited low injury levels and biomass reductions. However, at other subdoses, these herbicides caused significant plant damage. Among the herbicides tested, the auxinic herbicides, particularly dicamba, presented a higher risk for the tomato crop. The documentation and description of the visual symptoms caused by each herbicide applied to tomatoes will aid producers to identify drift problems in the field. Full article
Show Figures

Figure 1

Back to TopTop