Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Journal = Micro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Geochemistry and Microbiology of Atacamite-Paratacamite Biofilms Floating on Underground Brine and Petroleum Pools in the White Pine Copper Mine, Michigan (USA)
Micro 2023, 3(3), 728-738; https://doi.org/10.3390/micro3030051 - 28 Aug 2023
Viewed by 221
Abstract
At depth in an abandoned tunnel of the White Pine Copper Mine, green films of the Cu-OH-Cl minerals atacamite and paratacamite were found on standing pools of brine. Some pools were also coated with a thin layer of petroleum. Green films of atacamite [...] Read more.
At depth in an abandoned tunnel of the White Pine Copper Mine, green films of the Cu-OH-Cl minerals atacamite and paratacamite were found on standing pools of brine. Some pools were also coated with a thin layer of petroleum. Green films of atacamite were composed of individual blebs that averaged 20 μm in diameter and enclosed mixed colonies of Gram-negative, short rod-shaped, and sheathed filamentous bacteria. Carbon δ13C values in the atacamite–paratacamite mixtures reflect the isotopic values of bacteria and minor amounts of petroleum mixed with the minerals. Heterotrophic bacteria are interpreted to be using petroleum as a carbon source and may be catalyzing the precipitation of the copper hydroxy chloride minerals or acting as a template. Full article
Show Figures

Figure 1

Article
Experimental Wear Analysis of Nano-Sized Titania Particles as Additives in Automotive Lubricants
Micro 2023, 3(3), 715-727; https://doi.org/10.3390/micro3030050 - 21 Aug 2023
Viewed by 251
Abstract
This study focuses on the wear effects of nano-sized titania as a potential engine lubricant additive. Titanium dioxide nanoparticles have promising wear-reducing properties and significant tribological potential. In this article, titania nanoparticles were homogenized in Group III automotive oil at five different concentrations [...] Read more.
This study focuses on the wear effects of nano-sized titania as a potential engine lubricant additive. Titanium dioxide nanoparticles have promising wear-reducing properties and significant tribological potential. In this article, titania nanoparticles were homogenized in Group III automotive oil at five different concentrations (0.1; 0.2 … 0.5 wt%). The nanodoped oil samples were tested on a linear oscillating tribometer with oil circulation. Based on the tribological results, titania nanoparticles increased friction by 20–32% but can reduce the wear area by up to 32%. According to the confocal microscopic examination, wear volume can be reduced by up to 57% with titania nanoparticles. Titania nanoparticles improved the repeatability of tribological measurements. A scanning electron microscopy examination of the wear track revealed that the characteristic wear of the tribological system was abrasive, but a significant amount of adhesive wear was also observed. Energy dispersive X-ray spectroscopy analysis found that the nanoparticles fill the deeper trenches of the wear. The worn surface uniformly contains TiO2 particles and the quantified normalized titanium concentration was between 0.56 and 0.62%. Full article
Show Figures

Figure 1

Article
Matrix Effect of Properties of Au, ZnO and Eu2O3: Silica, Titania and Alumina Matrices
Micro 2023, 3(3), 699-714; https://doi.org/10.3390/micro3030049 - 19 Aug 2023
Viewed by 268
Abstract
The composites Au/SiO2, Au/TiO2, Au/Al2O3, ZnO/TiO2, ZnO/TiO2, ZnO/Al2O3 and Eu2O3/SiO2, Eu2O3/TiO2 and Eu2O3/Al [...] Read more.
The composites Au/SiO2, Au/TiO2, Au/Al2O3, ZnO/TiO2, ZnO/TiO2, ZnO/Al2O3 and Eu2O3/SiO2, Eu2O3/TiO2 and Eu2O3/Al2O3 were prepared using a solid-state method. The effect of the polymer precursors was investigated using two precursor polymers, Chitosan and Poly(styrene-co-4vinylpyridine), (PS-co-4-PVP) in the M/MxLy•Chitosan//M’xO’y as well as M/MxLy•PS-co-4-PVP//M’xO’y with M’xO’y = SiO2, TiO2 and Al2O3. The effects on the particle size and morphology were observed. The new composites were characterized using X-ray powder diffraction, SEM-EDS mapping and HRTEM analysis. The distribution of the metallic nanoparticles as well as the metal oxide nanoparticles inside the matrices depend on the matrix. Marked optical and photocatalytic effects of the Au, ZnO and Eu2O3 inside the SiO2, TiO2 and Al2O3 matrices are expected. An experiment is in course. Full article
Show Figures

Figure 1

Article
Highly Sensitive Sensor for the Determination of Riboflavin Using Thionine Coated Cadmium Selenide Quantum Dots Modified Graphite Electrode
Micro 2023, 3(3), 686-698; https://doi.org/10.3390/micro3030048 - 13 Aug 2023
Viewed by 399
Abstract
In this paper, the electrochemical non-enzymatic detection of Riboflavin (RF) was proposed based on its catalytic reduction in a Thionine-coated Cadmium Selenide Quantum dots (TH@CdSe QDs)-modified paraffin wax-impregnated graphite electrode (PIGE) that was prepared using a novel approach. The synthesized TH@CdSe QDs were [...] Read more.
In this paper, the electrochemical non-enzymatic detection of Riboflavin (RF) was proposed based on its catalytic reduction in a Thionine-coated Cadmium Selenide Quantum dots (TH@CdSe QDs)-modified paraffin wax-impregnated graphite electrode (PIGE) that was prepared using a novel approach. The synthesized TH@CdSe QDs were confirmed by UV-Vis spectroscopy, Confocal Raman Microscopy and High Resolution Transmission Electron Microscopy (HRTEM) studies. The electrochemical response of the TH@CdSe QDs-modified PIGE was studied by cyclic voltammetry. The voltammetric response of RF at the TH@CdSe QDs-modified PIGE showed higher current than the bare PIGE. Under optimum conditions, the electrocatalytic reduction currents of RF was found to be linearly related to its concentration over the range of 1.6 × 10−7 M to 1.4 × 10−4 M with a detection limit of 53 × 10−9 M (S/N = 3). The TH@CdSe QDs-modified PIGE was utilized as an amperometric sensor for the detection of RF in flow systems was performed by carrying out hydrodynamic and chronoamperometric experiments. The TH@CdSe QDs-modified PIGE showed very good stability and a longer shelf life. The applicability of the fabricated electrode was justified by the quantification of RF in commercial tablets. Full article
(This article belongs to the Special Issue Innovative Methods for Semiconductor Doping)
Show Figures

Graphical abstract

Article
Microfluidic System for Cell Mixing and Particle Focusing Using Dean Flow Fractionation
Micro 2023, 3(3), 671-685; https://doi.org/10.3390/micro3030047 - 31 Jul 2023
Viewed by 394
Abstract
Recent developments in the field of additive manufacturing processes have led to tremendous technological progress and opened directions for the field of microfluidics. For instance, new flexible materials for 3D printing allow the substitution of polydimethylsiloxane (PDMS) in microfluidic prototype development. Three-dimensional-printed microfluidic [...] Read more.
Recent developments in the field of additive manufacturing processes have led to tremendous technological progress and opened directions for the field of microfluidics. For instance, new flexible materials for 3D printing allow the substitution of polydimethylsiloxane (PDMS) in microfluidic prototype development. Three-dimensional-printed microfluidic components open new horizons, in particular for the automated handling of biological cells (e.g., eukaryotic cells or bacteria). Here, we demonstrate how passive mixing and passive separation processes of biological cells can be realized using 3D printing concepts for rapid prototyping. This technique facilitates low-cost experimental setups that are easy to modify and adopt for specific detection and diagnostic purposes. In particular, printing technologies based on fused deposition modeling and stereolithography are used and their realization is discussed. Additive technologies enable the fabrication of multiplication mixers, which overcome shortcomings of current pillar or curve-based techniques and enable efficient mixing, also of biological cells without affecting viability. Using standard microfluidic components and state-of-the art 3D printing technologies, we realize a separation system based on Dean flow fragmentation without the use of PDMS. In particular, we describe the use of a 3D-printed helix for winding a capillary for particle flow and a new chip design for particle separation at the outlet. We demonstrate the functionality of the system by successful isolation of ~12 µm-sized particles from a particle mixture containing large (~12 µm, typical size of eukaryotic cells) and small (~2 µm, typical size of bacteria or small yeasts) particles. Using this setup to separate eukaryotic cells from bacteria, we could prove that cell viability is not affected by passage through the microfluidic systems. Full article
Show Figures

Figure 1

Article
Extraction and Modification of Cellulose Microfibers Derived from Biomass of the Amazon Ochroma pyramidale Fruit
Micro 2023, 3(3), 653-670; https://doi.org/10.3390/micro3030046 - 28 Jul 2023
Viewed by 473
Abstract
Microfibers are important to several areas of human lifestyle, and the knowledge about their physicochemical characteristics allows for proposing new technological applications. The in natura microfiber of Ochroma pyramidale fruit (IN sample) and its extracted pulp (PU sample) were evaluated by X-ray Diffraction [...] Read more.
Microfibers are important to several areas of human lifestyle, and the knowledge about their physicochemical characteristics allows for proposing new technological applications. The in natura microfiber of Ochroma pyramidale fruit (IN sample) and its extracted pulp (PU sample) were evaluated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry and Differential Scanning Calorimetry (TG/dTG and DSC). Microfibers were composed mainly of (68 ± 1)% holocellulose, (35.8 ± 0.1)% cellulose, (32 ± 3)% lignin and (3.7 ± 0.3)% extractives. The XRD pattern of the PU sample revealed that the mercerization process resulted in the change of the cellulose crystal structure from Iα type (triclinic) to type II (monoclinic). The SEM technique showed that the IN sample presented regular cylindrical/hollow-shaped wire-like microfibers with diameters ranging from 5 µm to 25 µm. However, the mercerization process changed their natural morphology. A significant change in the FTIR spectra after the removal of hemicellulose and lignin components was observed: weak bands at 1739 cm−1 (C=O stretching of lignin and hemicellulose fractions), 1463 cm−1 (CH3 of lignin) and 1246 cm−1 (C-O of lignin) were still observed in the PU sample, indicating that the lignin was not completely removed due to the natural difficulty of isolating pure cellulose. The TG/dTG and DSC evaluation revealed a temperature increase of the second thermal event (starting at 235 °C) in the PU sample, which was assigned to the cellulose and residual hemicellulose degradation. Then, this work aimed to disseminate and characterize a microfiber with unusual characteristics still little explored by the scientific community, as well as its cellulosic pulp, providing information that may be useful in its application in different industries, enabling the positive development of new biocompatible, renewable and sustainable materials. Full article
Show Figures

Figure 1

Article
Photodegradation of Tropaeolin O in the Presence of Ag-Doped ZnO Nanoparticles
Micro 2023, 3(3), 643-652; https://doi.org/10.3390/micro3030045 - 28 Jul 2023
Viewed by 431
Abstract
Azo dyes such as Tropaeolin O have diverse applications in the textile, food, and biomedical industries. However, their recalcitrant properties make them toxic substances in surface waters. Nanocatalysts are photoactive nanoparticles that generate reactive oxygen species to destroy organic compounds. Moreover, the presence [...] Read more.
Azo dyes such as Tropaeolin O have diverse applications in the textile, food, and biomedical industries. However, their recalcitrant properties make them toxic substances in surface waters. Nanocatalysts are photoactive nanoparticles that generate reactive oxygen species to destroy organic compounds. Moreover, the presence of dopant agents in the nanoparticles’ crystalline structure efficiently enhances photocatalytic activity. Ag-doped ZnO nanoparticles were prepared in ethylene glycol at 197 °C and characterized by UV-Vis absorption, photoluminescence, high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and electron diffraction (ED). The particles were mainly spherical with a size of ~10 nm, a hexagonal structure, and an elemental composition of 56.2% Zn, 37.8% O, and 5.9% Ag. The particles evidenced a broad absorption peak in the UV region and two emission peaks. Absorption analysis indicates that 92% and 58% of Tropaeolin O were degraded using 100 and 50 ppm of Ag-doped ZnO nanoparticles, respectively, during the first 550 min. Ion chromatograms selected using quadrupole time-of-flight liquid chromatography-mass spectrometry (QTOF-LC-MS) indicate a complete Tropaeolin O degradation (295.04 m/z) during the first 330 min. Initially, the nanocatalyst attacks the electron-rich groups (-OH and -NH), generating the 277.03 m/z [M-OH]+ and 174.02 m/z (molecule rupture on the azo group). In addition, small oxidized fragments 167.03 m/z and 114.03 m/z confirm the nanoparticles’ photocatalytic capacity, and oxidized chains indicate the tropaeolin’s opening rings (including phtalic acids) and mineralization. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

Article
Simulation of the Dynamics of Supersonic N-Crowdions in fcc Lead and Nickel
Micro 2023, 3(3), 632-642; https://doi.org/10.3390/micro3030044 - 04 Jul 2023
Viewed by 351
Abstract
In the case where an interstitial atom is located in a close-packed atomic row of the crystal lattice, it is called a crowdion. Crowdions play an important role in the processes of mass and energy transfer resulting from irradiation, severe plastic deformation, ion [...] Read more.
In the case where an interstitial atom is located in a close-packed atomic row of the crystal lattice, it is called a crowdion. Crowdions play an important role in the processes of mass and energy transfer resulting from irradiation, severe plastic deformation, ion implantation, plasma and laser processing, etc. In this work, supersonic N-crowdions (N=1, 2) in fcc lattices of lead and nickel are studied by the method of molecular dynamics. Modeling shows that the propagation distance of a supersonic 2-crowdion in lead at a high initial velocity is less than that of a supersonic 1-crowdion. In other fcc metals studied, including nickel, supersonic 2-crowdions have a longer propagation distance than 1-crowdions. The relatively short propagation distance of supersonic 2-crowdions in lead is due to their instability and rapid transformation into supersonic 1-crowdions. This feature of the dynamics of supersonic N-crowdions in lead explains its high radiation-shielding properties. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

Article
Fabrication of Circular Cross-Section Microchannels with 3-D Lattice Arrangement and Their Use as On-Off Valves
Micro 2023, 3(3), 620-631; https://doi.org/10.3390/micro3030043 - 30 Jun 2023
Viewed by 234
Abstract
In this paper, circular cross-section microchannels with 3-D lattice arrangements are designed and fabricated using the Mosquito method in order to construct on-off valves. The 3-D microchannels with on-off valves consist of two types of lines: the flow lines for chemical liquid flow [...] Read more.
In this paper, circular cross-section microchannels with 3-D lattice arrangements are designed and fabricated using the Mosquito method in order to construct on-off valves. The 3-D microchannels with on-off valves consist of two types of lines: the flow lines for chemical liquid flow and the control lines to activate the valves. We confirmed that both a circular cross-section and a PDMS with low elastic modulus used as the microchannel material contribute to a valve that can be closed with a lower pressure. Then, we demonstrated liquid flow to evaluate the functionality of the valve. Fluorescein solution was flown into a flow line. We found that the fluorescence intensity decreases at the intersection between the flow and control lines when the flow line is closed by the inflation of the control line, experimentally confirming the functionality of the valve microchannels fabricated via the Mosquito method. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

Article
Selective Hydrodeoxygenation of Guaiacol to Cyclohexane over Ru-Catalysts Based on MFI Nanosheets
Micro 2023, 3(2), 610-619; https://doi.org/10.3390/micro3020042 - 20 Jun 2023
Viewed by 468
Abstract
Bio-oils derived from the pyrolysis of lignin-based biomass often contain a variety of oxygenated compounds, which can compromise their usefulness as a fuel. To improve the quality of bio-oil, catalytic hydrodeoxygenation (HDO) is a crucial step that removes oxygen from the oil in [...] Read more.
Bio-oils derived from the pyrolysis of lignin-based biomass often contain a variety of oxygenated compounds, which can compromise their usefulness as a fuel. To improve the quality of bio-oil, catalytic hydrodeoxygenation (HDO) is a crucial step that removes oxygen from the oil in the form of water. In this study, we showed that MFI nanosheets are excellent supports for Ru-catalysts. We synthesized highly crystalline MFI nanosheets using a simple hydrothermal seeding procedure; the final material was obtained in 56 h of crystallization. We investigated the activity of Ru supported on different materials. Our findings indicated that Ru supported on hierarchical MFI demonstrated excellent activity in HDO of guaiacol. Our results demonstrated that Ru/ZNS-56 achieved nearly 100% selectivity towards cyclohexane under mild conditions (200 °C, 50 bar H2, 1 h). Full article
Show Figures

Figure 1

Communication
F2 Laser-Induced Micro-Reticulated Structural Changes of Amorphous Carbon Thin Films
Micro 2023, 3(2), 602-609; https://doi.org/10.3390/micro3020041 - 16 Jun 2023
Viewed by 505
Abstract
Micro/nanoprocessing of materials using lasers is currently an active research topic. In that research, the choice of the laser to be used is critical, but the F2 laser, which has the shortest wavelength (157 nm) among commercially available lasers, has few research [...] Read more.
Micro/nanoprocessing of materials using lasers is currently an active research topic. In that research, the choice of the laser to be used is critical, but the F2 laser, which has the shortest wavelength (157 nm) among commercially available lasers, has few research compared to its potential. In this paper, we discovered a new photochemical processing by using an F2 laser to irradiate an amorphous carbon thin film. The short wavelength and high photon energy of the F2 laser can photoexcite the surface of the thin film at high density and generate active oxygen atoms O(1D) by photodecomposition of atmospheric oxygen molecules. As a result, the optical change of the amorphous carbon thin film was induced without thickness reduction, and a micron-sized network-like, reticulated structural change was formed in the thin film surface after one month at the latest. The formed micron-sized reticulated structure was relatively swollen, and a graphitization occurred in the structure, observed by Raman spectroscopy. However, the structure was not observed when the laser irradiated area became smaller. This work has made it possible to form a micron-sized reticulated structure including carbon nanocrystals in an amorphous carbon, which is expected to further expand the applications of carbon materials. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

Article
Sacrificial Doping as an Approach to Controlling the Energy Properties of Adsorption Sites in Gas-Sensitive ZnO Nanowires
Micro 2023, 3(2), 591-601; https://doi.org/10.3390/micro3020040 - 01 Jun 2023
Viewed by 584
Abstract
Currently, devices for environmental gas analyses are required in many areas of application. Among such devices, semiconductor-resistive gas sensors differ advantageously. However, their characteristics need further improvement. The development of methods for controlling the surface properties of nanostructured metal oxides for their use [...] Read more.
Currently, devices for environmental gas analyses are required in many areas of application. Among such devices, semiconductor-resistive gas sensors differ advantageously. However, their characteristics need further improvement. The development of methods for controlling the surface properties of nanostructured metal oxides for their use as gas sensors is of great interest. In this paper, a method involving the sacrificial doping of ZnO nanowires to control the content of their surface defects (oxygen vacancies) was proposed. Zinc oxide nanowires were synthesized using the hydrothermal method with sodium iodide or bromide as an additional precursor. The surface composition was studied using X-ray photoelectron spectroscopy. The sensor properties of the isopropyl alcohol vapors at 150 °C were studied. It was shown that a higher concentration of oxygen vacancies/hydroxyl groups was observed on the surfaces of the samples synthesized with the addition of iodine and bromine precursors compared to the pure zinc oxide nanowires. It was also found out that these samples were more sensitive to isopropyl alcohol vapors. A model was proposed to explain the appearance of additional oxygen vacancies in the subsurface layer of the zinc oxide nanowires when sodium iodide or sodium bromide was added to the initial solution. The roles of oxygen vacancies and surface hydroxyl groups in providing the samples with an increased sensitivity were explained. Thus, a method involving the sacrificial doping of zinc oxide nanowires has been developed, which led to an improvement in their gas sensor characteristics due to an increase in the concentration of oxygen vacancies on their surface. The results are promising for percolation gas sensors equipped with additional water vapor traps that work stably in a high humidity. Full article
(This article belongs to the Special Issue Innovative Methods for Semiconductor Doping)
Show Figures

Figure 1

Article
A Novel Approach of Polyethylene Glycol-4000 Hydrogels as Controlled Drug Carriers
Micro 2023, 3(2), 578-590; https://doi.org/10.3390/micro3020039 - 01 Jun 2023
Viewed by 578
Abstract
In this study, we developed polyethylene glycol-4000-based hydrogels for ketorolac tromethamine-controlled delivery systems through a free radical polymerization method. The developed hydrogels were subjected to FTIR, TGA, DSC, XRD, SEM, porosity analysis, dynamic swelling analysis, release studies, etc. The successful crosslinking and stability [...] Read more.
In this study, we developed polyethylene glycol-4000-based hydrogels for ketorolac tromethamine-controlled delivery systems through a free radical polymerization method. The developed hydrogels were subjected to FTIR, TGA, DSC, XRD, SEM, porosity analysis, dynamic swelling analysis, release studies, etc. The successful crosslinking and stability of the prepared hydrogels were confirmed by FTIR, DSC, and TGA analysis. The surface morphology and the reduction in the crystallinity of the polymer after grafting were shown by SEM and XRD analysis. Similarly, the soluble part of the developed hydrogels was eliminated from their insoluble part by the Soxhlet extraction process. Higher dynamic swelling and drug release were observed at high pH values compared to low pH values. High porosity was perceived with high concentrations of the monomers and polymer and decreased with the high incorporation of a crosslinker. The release mechanism of all formulations followed non-Fickian diffusion. The results demonstrate that the developed polyethylene glycol-4000 hydrogels could serve as promising controlled drug delivery carriers. Full article
(This article belongs to the Special Issue Hydrogel Nanocomposites for Biomedical Applications)
Show Figures

Figure 1

Article
Pressure-Driven Sample Flow through an Electrospun Membrane Increases the Analyte Adsorption
Micro 2023, 3(2), 566-577; https://doi.org/10.3390/micro3020038 - 26 May 2023
Viewed by 1076
Abstract
Electrospun polymer membranes are regarded as prospective biosensor components due to their large specific surface area and diverse opportunities for chemical modifications. However, their intricate porous structure can impede diffusion and render some analyte-binding sites inaccessible. To overcome these diffusion limitations and improve [...] Read more.
Electrospun polymer membranes are regarded as prospective biosensor components due to their large specific surface area and diverse opportunities for chemical modifications. However, their intricate porous structure can impede diffusion and render some analyte-binding sites inaccessible. To overcome these diffusion limitations and improve analyte adsorption onto the polymer, a pressure-driven sample flow through the membrane can be employed. To date, the efficiency of pressure-driven analyte delivery into these membranes has not been quantified. Here, we compare forced flow and passive sample diffusion through poly(dioxanone) electrospun membranes. We examine two model analytes, BSA and interleukin-1 beta (IL1b), to address both non-specific and specific binding. Following exposure of the membranes to the test solutions, we measured the residual concentrations of the analytes using fluorometry and enzyme-linked immunosorbent assay (ELISA) techniques. The pressure-driven sample loading was superior to passive diffusion, with a 2.8–11.5-fold change for physical adsorption and a 2.4–3.4-fold difference for specific binding. Our data can be useful for the development of immunoassays and microfluidic devices. Full article
Show Figures

Figure 1

Review
Probing Italy: A Scanning Probe Microscopy Storyline
Micro 2023, 3(2), 549-565; https://doi.org/10.3390/micro3020037 - 18 May 2023
Viewed by 996
Abstract
Starting from the late 1980’s, scanning probe microscopy has progressively diffused in Italy until today. In this paper, we provide a brief account of the main historical events and a current picture of the distribution of the active groups. A survey was prepared [...] Read more.
Starting from the late 1980’s, scanning probe microscopy has progressively diffused in Italy until today. In this paper, we provide a brief account of the main historical events and a current picture of the distribution of the active groups. A survey was prepared by LimeSurvey, made of six sections asking for personal and institutional data, human resources, equipment available, fields of interest, research projects, educational/dissemination activities, and two relevant publications in the last six years. It turns out that the Italian community includes more than seventy groups and two companies. It is widely diffused, although mostly concentrated near large academic and research institutions, often in locations where prominent Italian researchers have operated. This community is active in many scientific fields and can produce research of high international quality. It shows a wide competence, as proven by the list of research works published in journals ranked within the top 20% class. The diffusion of SPM microscopes in industry is still sporadic, possibly due to extensive collaborations between the research institutions and industries themselves. The authors hope that this work might be useful to the community and beyond, and that it might stimulate the formation of a more structured network. Full article
(This article belongs to the Special Issue State-of-the-Art Microscale and Nanoscale Researches in Italy)
Show Figures

Figure 1

Back to TopTop