Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,130)

Search Parameters:
Journal = Membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Nanocomposite Polymer Gel Electrolyte Based on TiO2 Nanoparticles for Lithium Batteries
Membranes 2023, 13(9), 776; https://doi.org/10.3390/membranes13090776 (registering DOI) - 01 Sep 2023
Abstract
In this article, the specific features of competitive ionic and molecular transport in nanocomposite systems based on network membranes synthesized by radical polymerization of polyethylene glycol diacrylate in the presence of LiBF4, 1-ethyl-3-methylimidazolium tetrafluoroborate, ethylene carbonate (EC), and TiO2 nanopowder [...] Read more.
In this article, the specific features of competitive ionic and molecular transport in nanocomposite systems based on network membranes synthesized by radical polymerization of polyethylene glycol diacrylate in the presence of LiBF4, 1-ethyl-3-methylimidazolium tetrafluoroborate, ethylene carbonate (EC), and TiO2 nanopowder (d~21 nm) were studied for 1H, 7Li, 11B, 13C, and 19F nuclei using NMR. The membranes obtained were studied through electrochemical impedance, IR-Fourier spectroscopy, DSC, and TGA. The ionic conductivity of the membranes was up to 4.8 m Scm−1 at room temperature. The operating temperature range was from −40 to 100 °C. Two types of molecular and ionic transport (fast and slow) have been detected by pulsed field gradient NMR. From quantum chemical modeling, it follows that the difficulty of lithium transport is due to the strong chemisorption of BF4 anions with counterions on the surface of TiO2 nanoparticles. The theoretical conclusion about the need to increase the proportion of EC in order to reduce the influence of this effect was confirmed by an experimental study of a system with 4 moles of EC. It has been shown that this approach leads to an increase in lithium conductivity in an ionic liquid medium, which is important for the development of thermostable nanocomposite electrolytes for Li//LiFePO4 batteries with a base of lithium salts and aprotonic imidasolium ionic liquid. Full article
Show Figures

Figure 1

Article
Acrylonitrile–Acrylic Acid Copolymer Ultrafiltration Membranes for Selective Asphaltene Removal from Crude Oil
Membranes 2023, 13(9), 775; https://doi.org/10.3390/membranes13090775 (registering DOI) - 01 Sep 2023
Abstract
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement [...] Read more.
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes. The addition of 10% of acrylic acid to the polymer chain decreases the water contact angle from 71° to 43°, reducing both the total fouling and irreversible fouling compared to membranes made from a PAN homopolymer. The obtained membranes with a pore size of 32–55 nm demonstrated a pure toluene permeance of 84.8–130.4 L/(m2·h·bar) and asphaltene rejection from oil/toluene solutions (100 g/L) of 33–95%. An analysis of the asphaltene rejection values revealed that the addition of acrylic acid increases the rejection values in comparison to PAN membranes with the same pore size. Our results suggest that the acrylonitrile–acrylic acid copolymer ultrafiltration membranes have promising potential for the efficient removal of asphaltenes from crude oil. Full article
Show Figures

Figure 1

Editorial
A Commemorative Special Issue in Honor of Professor Victor Nikonenko
Membranes 2023, 13(9), 774; https://doi.org/10.3390/membranes13090774 (registering DOI) - 01 Sep 2023
Abstract
Victor Nikonenko is celebrating his 70th birthday this year [...] Full article
Article
Study on Low Thermal-Conductivity of PVDF@SiAG/PET Membranes for Direct Contact Membrane Distillation Application
Membranes 2023, 13(9), 773; https://doi.org/10.3390/membranes13090773 (registering DOI) - 31 Aug 2023
Viewed by 78
Abstract
In order to enhance the separation performance and reduce the heat loss of transmembrane for membrane distillation, the thermal efficiency and hydrophobicity of the membrane distillation need to be simultaneously enhanced. In this work, a polyvinylidene difluoride/polyethylene glycol terephthalate (PVDF/PET) hydrophobic/hydrophilic membrane has [...] Read more.
In order to enhance the separation performance and reduce the heat loss of transmembrane for membrane distillation, the thermal efficiency and hydrophobicity of the membrane distillation need to be simultaneously enhanced. In this work, a polyvinylidene difluoride/polyethylene glycol terephthalate (PVDF/PET) hydrophobic/hydrophilic membrane has been prepared by non-solvent phase induction method. Nanosized silica aerogel (SiAG) with high porosity has been added to the composite membranes. The modifying effects and operating conditions on permeate flux and thermal efficiency in direct contact membrane distillation (DCMD) are investigated. Furthermore, the latent heat of vaporization and the heat transfer across the membranes have been compared for SiAG addition, which indicates that the composite PVDF@SiAG/PET membranes demonstrate a great potential for distillation-separation application due to their high heat efficiency. Full article
(This article belongs to the Special Issue Advances in Membrane Distillation)
Show Figures

Figure 1

Article
Effect of Edible Coatings of Cassava Starch Incorporated with Clove and Cinnamon Essential Oils on the Shelf Life of Papaya
Membranes 2023, 13(9), 772; https://doi.org/10.3390/membranes13090772 - 31 Aug 2023
Viewed by 128
Abstract
Applying edible coatings added with plant essential oils is a strategy used to delay ripening processes in climacteric fruits such as papaya. Formulations comprising 3% or 4% cassava starch (w/v), added with clove or cinnamon essential oils (2 mL/L), [...] Read more.
Applying edible coatings added with plant essential oils is a strategy used to delay ripening processes in climacteric fruits such as papaya. Formulations comprising 3% or 4% cassava starch (w/v), added with clove or cinnamon essential oils (2 mL/L), were tested for microbial inhibition (in vitro) purposes. Moreover, these fruits’ physicochemical and microbiological aspects were assessed at 25 °C, for 12 days. Slight variations in pH and Brix values were observed during storage. On the other hand, there were no significant variations in carotenoid contents over storage time. The papaya fruits’ coating contributed to reducing their weight loss from 40.66% (uncoated sample) to 24.10% on the 12th storage day, as well as delayed changes often observed during the ripening process. The 4% cassava starch coatings added with essential oils were more efficient in reducing microbiological levels. The herein proposed treatments reduced aerobic mesophilic bacteria, as well as molds and yeast counts, by 1.48 and 1.95 log CFU/g, on average, respectively, in comparison to the control sample. The assessed microorganism counts were higher in the uncoated sample than in the coated papaya fruits, after 12 days of storage. Thus, the tested coatings can potentially delay the emergence of post-harvest changes; consequently, they can help improve the quality of papaya fruits and extend their shelf life. Full article
(This article belongs to the Special Issue Recent Advances in Biodegradable and Edible Biopolymer-Based Films)
Show Figures

Figure 1

Editorial
Graphene Oxide Membranes—Synthesis, Properties, and Applications
Membranes 2023, 13(9), 771; https://doi.org/10.3390/membranes13090771 - 31 Aug 2023
Viewed by 115
Abstract
Graphene oxide (GO) is a layered material composed of graphene planes randomly decorated by oxygen-containing groups—carbonyl, hydroxyl, epoxy, carboxyl, etc [...] Full article
(This article belongs to the Special Issue Graphene Oxide Membranes—Synthesis, Properties, and Applications)
Article
Co(II)-Chelated Polyimines as Oxygen Reduction Reaction Catalysts in Anion Exchange Membrane Fuel Cells
Membranes 2023, 13(9), 769; https://doi.org/10.3390/membranes13090769 - 30 Aug 2023
Viewed by 96
Abstract
In this paper, a cobalt (Co)-chelated polynaphthalene imine (Co-PNIM) was calcined to become an oxygen reduction reaction (ORR) electrocatalyst (Co-N-C) as the cathode catalyst (CC) of an anion exchange membrane fuel cell (AEMFC). The X-ray diffraction pattern of CoNC-1000A900 illustrated that the carbon [...] Read more.
In this paper, a cobalt (Co)-chelated polynaphthalene imine (Co-PNIM) was calcined to become an oxygen reduction reaction (ORR) electrocatalyst (Co-N-C) as the cathode catalyst (CC) of an anion exchange membrane fuel cell (AEMFC). The X-ray diffraction pattern of CoNC-1000A900 illustrated that the carbon matrix develops clear C(002) and Co(111) planes after calcination, which was confirmed using high-resolution TEM pictures. Co-N-Cs also demonstrated a significant ORR peak at 0.8 V in a C–V (current vs. voltage) curve and produced an extremely limited reduction current density (5.46 mA cm−2) comparable to commercial Pt/C catalysts (5.26 mA cm−2). The measured halfway potential of Co-N-C (0.82 V) was even higher than that of Pt/C (0.81 V). The maximum power density (Pmax) of the AEM single cell upon applying Co-N-C as the CC was 243 mW cm−2, only slightly lower than that of Pt/C (280 mW cm−2). The Tafel slope of CoNC-1000A900 (33.3 mV dec−1) was lower than that of Pt/C (43.3 mV dec−1). The limited reduction current density only decayed by 7.9% for CoNC-1000A900, compared to 22.7% for Pt/C, after 10,000 redox cycles. Full article
(This article belongs to the Special Issue Advanced Polymeric Membranes for Fuel Cell Applications)
Show Figures

Figure 1

Review
Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review
Membranes 2023, 13(9), 770; https://doi.org/10.3390/membranes13090770 - 30 Aug 2023
Viewed by 135
Abstract
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in [...] Read more.
Several chromatographic approaches have been established over the last decades for the production of pharmaceutically relevant viruses. Due to the large size of these products compared to other biopharmaceuticals, e.g., proteins, convective flow media have proven to be superior to bead-based resins in terms of process productivity and column capacity. One representative of such convective flow materials is membranes, which can be modified to suit the particular operating principle and are also suitable for economical single-use applications. Among the different membrane variants, affinity surfaces allow for the most selective separation of the target molecule from other components in the feed solution, especially from host cell-derived DNA and proteins. A successful membrane affinity chromatography, however, requires the identification and implementation of ligands, which can be applied economically while at the same time being stable during the process and non-toxic in the case of any leaching. This review summarizes the current evaluation of membrane-based affinity purifications for viruses and virus-like particles, including traditional resin and monolith approaches and the advantages of membrane applications. An overview of potential affinity ligands is given, as well as considerations of suitable affinity platform technologies, e.g., for different virus serotypes, including a description of processes using pseudo-affinity matrices, such as sulfated cellulose membrane adsorbers. Full article
(This article belongs to the Special Issue Advances in Membrane Chromatography)
Show Figures

Figure 1

Article
Xe Recovery from Nuclear Power Plants Off-Gas Streams: Molecular Simulations of Gas Permeation through DD3R Zeolite Membrane
Membranes 2023, 13(9), 768; https://doi.org/10.3390/membranes13090768 - 30 Aug 2023
Viewed by 135
Abstract
Recent experimental work has shown zeolite membrane-based separation as a promising potential technology for Kr/Xe gas mixtures due to its much lower energy requirements in comparison to cryogenic distillation, the conventional separation method for such mixtures. Such a separation is also economically rewarding [...] Read more.
Recent experimental work has shown zeolite membrane-based separation as a promising potential technology for Kr/Xe gas mixtures due to its much lower energy requirements in comparison to cryogenic distillation, the conventional separation method for such mixtures. Such a separation is also economically rewarding because Xe is in high demand, as a valuable product for many applications/processes. In this work, we have used Molecular Dynamics (MD) simulations to study the effects of different conditions, i.e., temperature, pressure, and gas feed composition, on Kr/Xe separation performance via DD3R zeolite membranes. We provide a comprehensive study of the permeation of the different gas species, density profiles, and diffusion coefficients. Molecular simulations show that if the feed is changed from pure Kr/Xe to an equimolar mixture, the Kr/Xe separation factor increases, which agrees with experiments. In addition, when Ar is introduced as a sweep gas, the adsorption of both Kr and Xe increases, while the permeation of pure Kr increases. A similar behavior is observed with equimolar mixtures of Kr/Xe with Ar as the sweep gas. High-separation Kr/Xe selectivity is observed at 50 atm and 425 K but with low total permeation rates. Changing pressure and temperature are found to have profound effects on optimizing the separation selectivity and the permeation throughput. Full article
Show Figures

Figure 1

Article
Effect of Heat Treatment on Yellow Field Pea (Pisum sativum) Protein Concentrate Coupled with Membrane Ultrafiltration on Emulsification Properties of the Isolated >50 kDa Proteins
Membranes 2023, 13(9), 767; https://doi.org/10.3390/membranes13090767 - 30 Aug 2023
Viewed by 152
Abstract
The aim of this paper was to determine the emulsification properties of protein aggregates obtained from heat pretreated yellow field pea protein concentrate (PPC). PPC dispersions were prepared in distilled water (adjusted to pH 3.0, 5.0, 7.0, or 9.0), heated in a water [...] Read more.
The aim of this paper was to determine the emulsification properties of protein aggregates obtained from heat pretreated yellow field pea protein concentrate (PPC). PPC dispersions were prepared in distilled water (adjusted to pH 3.0, 5.0, 7.0, or 9.0), heated in a water bath (100 °C) for 30 min, centrifuged and the supernatant passed first through a 30 kDa membrane and, then, the first retentate (>30 kDa) through a 50 kDa membrane. The 50 kDa membrane separation yielded a second retentate (>50 kDa proteins), which was isolated for emulsification studies. The near UV circular dichroic spectra of the protein samples showed more unfolded structures at pH 3.0 and 5.0 than at pH 7.0 and 9.0. The presence of small and spherical oil droplets of emulsions stabilized by the >50 kDa proteins at pH 3.0, 7.0, and 9.0 was confirmed by confocal laser scanning microscopy images. Emulsions stabilized at pH 7.0 and 9.0 had a narrower size distribution range than at pH 3.0 and 5.0. A narrow oil droplet size distribution range and lower interfacial protein concentrations of the emulsions stabilized by the >50 kDa proteins were observed at the corresponding pH of the heat treatment when compared to other pH values. Emulsions stabilized by the >50 kDa proteins exhibited a relatively low flocculation and coalescence index, which infers relative stability. The results from this work suggest that heat pretreatment of the PPC led to the formation of new protein aggregates, especially FT9 with enhanced emulsification properties, at some of the test conditions when compared to the unheated PPC. Full article
Show Figures

Figure 1

Review
Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining
Membranes 2023, 13(9), 765; https://doi.org/10.3390/membranes13090765 - 29 Aug 2023
Viewed by 401
Abstract
Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in [...] Read more.
Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium. Full article
(This article belongs to the Special Issue Preparation and Application of Advanced Functional Membranes)
Show Figures

Figure 1

Article
Fabrication and Characterization of Cu2+-Driven PTFE-Reinforced Artificial Muscle Polymer Membrane for Water Purification and Energy Harvesting Applications
Membranes 2023, 13(9), 766; https://doi.org/10.3390/membranes13090766 - 29 Aug 2023
Viewed by 249
Abstract
Ionic polymer membranes have not yet gained widespread practical application in areas such as water purification and energy harvesting due to their high cost and tendency to swell. The present study involved the fabrication of reinforced textile structures composed of polytetrafluoroethylene (PTFE)-reinforced Nafion [...] Read more.
Ionic polymer membranes have not yet gained widespread practical application in areas such as water purification and energy harvesting due to their high cost and tendency to swell. The present study involved the fabrication of reinforced textile structures composed of polytetrafluoroethylene (PTFE)-reinforced Nafion membranes coated with non-precious metals, copper and silver, as a surface electrode by applying a chemical decomposition technique. Several mechanical, contact angle measurement and dielectric tests were conducted on membranes to evaluate their mechanical, wettability and conductivity properties. From scanning electron microscopy, it is clear that the formation of surface electrodes with uniform dispersion of metal particles. Scratch test reveals the adhesive strength between the coated metal particles and membrane. The silver-activated copper-coated membrane has a high contact angle of 121°. Thus, the fabricated membranes can have good antibacterial and adsorption properties for water treatment. The copper-coated membrane has a high Young’s modulus of 779 ± 80 MPa and a tensile strength of 29.1 ± 8 MPa, whereas the elongation at break is more for silver-activated copper-coated samples recorded as 158 ± 4%. The viscoelastic behavior of the membranes was analyzed through dynamic mechanical analysis (DMA). A sharp rise in the storage modulus (E′) value of 4.8 × 1010 Pa at ~80 °C at a frequency of 1 Hz on metal surface electrodes signifies an improvement in the strength of the material in comparison to the initial pure membrane. The successful enhancement of conductivity on the membrane surface via chemical deposition on the silver-activated membrane is 1 × 10−4 (S/cm) and holds great potential for facilitating voltage transmission through the tribolayer in the nanogenerators. Full article
Show Figures

Figure 1

Review
Asymmetric Distribution of Plasmalogens and Their Roles—A Mini Review
Membranes 2023, 13(9), 764; https://doi.org/10.3390/membranes13090764 - 29 Aug 2023
Viewed by 259
Abstract
Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. The synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. Plasmalogens are transported to the post-Golgi compartment, including endosomes and plasma membranes, in a manner dependent [...] Read more.
Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. The synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. Plasmalogens are transported to the post-Golgi compartment, including endosomes and plasma membranes, in a manner dependent on ATP, but not vesicular transport. Plasmalogens are preferentially localized in the inner leaflet of the plasma membrane in a manner dependent on P4-type ATPase ATP8B2, that associates with the CDC50 subunit. Plasmalogen biosynthesis is spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in the inner leaflet of the plasma membrane and controls the stability of fatty acyl-CoA reductase 1 (FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. The physiological consequences of such asymmetric localization and homeostasis of plasmalogens are discussed in this review. Full article
(This article belongs to the Special Issue Advances in Symmetric and Asymmetric Lipid Membranes)
Show Figures

Figure 1

Article
Changes in Ion Transport across Biological Membranes Exposed to Particulate Matter
Membranes 2023, 13(9), 763; https://doi.org/10.3390/membranes13090763 - 29 Aug 2023
Viewed by 195
Abstract
The cells of living organisms are surrounded by the biological membranes that form a barrier between the internal and external environment of the cells. Cell membranes serve as barriers and gatekeepers. They protect cells against the entry of undesirable substances and are the [...] Read more.
The cells of living organisms are surrounded by the biological membranes that form a barrier between the internal and external environment of the cells. Cell membranes serve as barriers and gatekeepers. They protect cells against the entry of undesirable substances and are the first line of interaction with foreign particles. Therefore, it is very important to understand how substances such as particulate matter (PM) interact with cell membranes. To investigate the effect of PM on the electrical properties of biological membranes, a series of experiments using a black lipid membrane (BLM) technique were performed. L-α-Phosphatidylcholine from soybean (azolectin) was used to create lipid bilayers. PM samples of different diameters (<4 (SRM-PM4.0) and <10 μm (SRM-PM10) were purchased from The National Institute of Standards and Technology (USA) to ensure the repeatability of the measurements. Lipid membranes with incorporated gramicidin A (5 pg/mL) ion channels were used to investigate the effect of PM on ion transport. The ionic current passing through the azolectin membranes was measured in ionic gradients (50/150 mM KCl on cis/trans side). In parallel, the electric membrane capacitance measurements, analysis of the conductance and reversal potential were performed. Our results have shown that PM at concentration range from 10 to 150 μg/mL reduced the basal ionic current at negative potentials while increased it at positive ones, indicating the interaction between lipids forming the membrane and PM. Additionally, PM decreased the gramicidin A channel activity. At the same time, the amplitude of channel openings as well as single channel conductance and reversal potential remained unchanged. Lastly, particulate matter at a concentration of 150 μg/mL did not affect the electric membrane capacity to any significant extent. Understanding the interaction between PM and biological membranes could aid in the search for effective cytoprotective strategies. Perhaps, by the use of an artificial system, we will learn to support the consequences of PM-induced damage. Full article
(This article belongs to the Special Issue Advances in Artificial and Biological Membranes, Volume II)
Show Figures

Figure 1

Review
Strategies to Mitigate Biofouling of Nanocomposite Polymer-Based Membranes in Contact with Blood
Membranes 2023, 13(9), 762; https://doi.org/10.3390/membranes13090762 - 28 Aug 2023
Viewed by 174
Abstract
An extracorporeal blood purification method called continuous renal replacement therapy uses a porous hollow-fiber polymeric membrane that is exposed to prolonged contact with blood. In that condition, like with any other submerged filtration membrane, the hemofilter loses its properties over time and use [...] Read more.
An extracorporeal blood purification method called continuous renal replacement therapy uses a porous hollow-fiber polymeric membrane that is exposed to prolonged contact with blood. In that condition, like with any other submerged filtration membrane, the hemofilter loses its properties over time and use resulting in a rapid decline in flux. The most significant reason for this loss is the formation of a biofilm. Protein, blood cells and bacterial cells attach to the membrane surface in complex and fluctuating processes. Anticoagulation allows for longer patency of vascular access and a longer lifespan of the membrane. Other preventive measures include the modification of the membrane itself. In this article, we focused on the role of nanoadditives in the mitigation of biofouling. Nanoparticles such as graphene, carbon nanotubes, and silica effectively change surface properties towards more hydrophilic, affect pore size and distribution, decrease protein adsorption and damage bacteria cells. As a result, membranes modified with nanoparticles show better flow parameters, longer lifespan and increased hemocompatibility. Full article
(This article belongs to the Special Issue Preparation and Application of Novel Polymer Membranes)
Show Figures

Figure 1

Back to TopTop