Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,122)

Search Parameters:
Journal = Batteries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Investigation of the Influence of Silicon Oxide Content on Electrolyte Degradation, Gas Evolution, and Thickness Change in Silicon Oxide/Graphite Composite Anodes for Li-Ion Cells Using Operando Techniques
Batteries 2023, 9(9), 449; https://doi.org/10.3390/batteries9090449 (registering DOI) - 01 Sep 2023
Abstract
This research paper investigates the influence of varying silicon oxide (SiOx) content on the performance and aging of lithium-ion cells. In-depth investigations encompass charge and discharge curves, thickness changes, electrolyte degradation, gas evolution, and chemical analysis of cells with different silicon [...] Read more.
This research paper investigates the influence of varying silicon oxide (SiOx) content on the performance and aging of lithium-ion cells. In-depth investigations encompass charge and discharge curves, thickness changes, electrolyte degradation, gas evolution, and chemical analysis of cells with different silicon oxide proportions in the anode and their associated cathodes. The results show that a higher silicon oxide content in the anode increases the voltage hysteresis between charge and discharge. Moreover, the first-cycle efficiencies decrease with a higher silicon oxide content, attributed to irreversible LixSiy formation and the subsequent loss of active lithium from the cathode during formation. The anodes experience higher thickness changes with increased silicon oxide content, and peaks in differential voltage curves can be correlated with specific anode active materials and their thickness change. A gas analysis reveals conductive salt and electrolyte intermediates as well as silicon-containing gaseous fragments, indicating continuous electrolyte decomposition and silicon oxide aging, respectively. Additionally, a chemical analysis confirms increased silicon-derived products and electrolyte degradation on electrode surfaces. These findings underscore the importance of a holistic aging investigation and help understand the complex chemical changes in electrode materials for designing efficient and durable lithium-ion cells. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

Article
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Iterative Transfer Learning and Mogrifier LSTM
Batteries 2023, 9(9), 448; https://doi.org/10.3390/batteries9090448 (registering DOI) - 31 Aug 2023
Abstract
Lithium-ion battery health and remaining useful life (RUL) are essential indicators for reliable operation. Currently, most of the RUL prediction methods proposed for lithium-ion batteries use data-driven methods, but the length of training data limits data-driven strategies. To solve this problem and improve [...] Read more.
Lithium-ion battery health and remaining useful life (RUL) are essential indicators for reliable operation. Currently, most of the RUL prediction methods proposed for lithium-ion batteries use data-driven methods, but the length of training data limits data-driven strategies. To solve this problem and improve the safety and reliability of lithium-ion batteries, a Li-ion battery RUL prediction method based on iterative transfer learning (ITL) and Mogrifier long and short-term memory network (Mogrifier LSTM) is proposed. Firstly, the capacity degradation data in the source and target domain lithium battery historical lifetime experimental data are extracted, the sparrow search algorithm (SSA) optimizes the variational modal decomposition (VMD) parameters, and several intrinsic mode function (IMF) components are obtained by decomposing the historical capacity degradation data using the optimization-seeking parameters. The highly correlated IMF components are selected using the maximum information factor. Capacity sequence reconstruction is performed as the capacity degradation information of the characterized lithium battery, and the reconstructed capacity degradation information of the source domain battery is iteratively input into the Mogrifier LSTM to obtain the pre-training model; finally, the pre-training model is transferred to the target domain to construct the lithium battery RUL prediction model. The method’s effectiveness is verified using CALCE and NASA Li-ion battery datasets, and the results show that the ITL-Mogrifier LSTM model has higher accuracy and better robustness and stability than other prediction methods. Full article
Show Figures

Figure 1

Article
Thermal Propagation Test Bench with Multi Pouch Cell Setup for Reproducibility Investigations
Batteries 2023, 9(9), 447; https://doi.org/10.3390/batteries9090447 (registering DOI) - 31 Aug 2023
Abstract
Thermal propagation events of the traction batteries in electric vehicles are rare. However, their impact on the passengers in form of fire, smoke and heat can be severe. Current data on the dependencies and the reproducibility of thermal propagation is limited despite these [...] Read more.
Thermal propagation events of the traction batteries in electric vehicles are rare. However, their impact on the passengers in form of fire, smoke and heat can be severe. Current data on the dependencies and the reproducibility of thermal propagation is limited despite these major implications. Therefore, a thermal propagation test bench was developed for custom multi pouch experiments. This setup includes a multitude of temperature sensors throughout the module, voltage monitoring and a mass flow sensor. Two distinct experiments were initiated by nail penetration. These show a high degree of reproducibility thus allowing for future experiments regarding the dependencies of initial module temperatures and State of Charge (SoC) variations. Full article
(This article belongs to the Special Issue The Precise Battery—towards Digital Twins for Advanced Batteries)
Show Figures

Figure 1

Article
Synthesis of a Yolk-Shell Nanostructured Silicon-Based Anode for High-Performance Li-Ion Batteries
Batteries 2023, 9(9), 446; https://doi.org/10.3390/batteries9090446 - 31 Aug 2023
Viewed by 113
Abstract
Silicon is a desirable anode material for Li-ion batteries owing to its remarkable theoretical specific capacity of over 4000 mAh/g. Nevertheless, the poor cycling performance of pure Si electrodes caused by dramatic volume expansion has limited its practical application. To alleviate the adverse [...] Read more.
Silicon is a desirable anode material for Li-ion batteries owing to its remarkable theoretical specific capacity of over 4000 mAh/g. Nevertheless, the poor cycling performance of pure Si electrodes caused by dramatic volume expansion has limited its practical application. To alleviate the adverse effects of Si expansion, we have synthesized anode materials of nano-Si particles trapped in a buffering space and outer carbon-based shells (Si@Void@C). The volume ratio of Si nanoparticle to void space could be adjusted accurately to approximately 1:3, which maintained the structural integrity of the as-designed nanoarchitecture during lithiation/delithiation and achieved a notable specific capacity of ~750 mAh/g for as-prepared half-cells. The yolk-shell nanostructure alleviates volumetric expansion on both material and electrode levels, which enhances the rate performance and cycling stability of the silicon-based anode. Full article
(This article belongs to the Special Issue Energy Materials, Electrolytes and Interfaces)
Show Figures

Figure 1

Article
Germanium–Cobalt–Indium Nanostructures as Anodes of Lithium-Ion Batteries for Room- and Low-Temperature Performance
Batteries 2023, 9(9), 445; https://doi.org/10.3390/batteries9090445 - 30 Aug 2023
Viewed by 101
Abstract
Germanium–cobalt–indium nanostructures were synthesized via cathodic electrodeposition from aqueous complex solutions of Ge (IV) and Co (II) with drop-like indium crystallization centers. This approach features simplicity, avoids heating and allows using cheaper GeO2 instead of pure Ge as starting material. Further, in [...] Read more.
Germanium–cobalt–indium nanostructures were synthesized via cathodic electrodeposition from aqueous complex solutions of Ge (IV) and Co (II) with drop-like indium crystallization centers. This approach features simplicity, avoids heating and allows using cheaper GeO2 instead of pure Ge as starting material. Further, in this case, target nanostructures grow directly upon the substrate. Various analytical methods (scanning electron microscopy, transmission electron microscope and X-ray diffraction) were used for characterization of the nanostructures under study. The samples obtained consist of an array of globular particles of 200 to 800 nm, with nanowires in between. The globules, in turn, contain primary particles of 5 to 10 nm consisting of cobalt, germanium and oxygen. Nanowires consist of germanium and indium. The electrochemical properties of the above-mentioned nanostructures were assessed with cyclic voltammetry and galvanostatic cycling. The germanium–cobalt–indium nanostructures are characterized by a high specific capacity upon lithium insertion, which is approximately 1350 mAh/g at C/8, and a high Coulomb cycling efficiency in the first cycle (approximately 0.76). Germanium–cobalt–indium nanostructures show the ability to operate at high rates up to 16 C at a wide temperature range from +20 to −35 °C. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

Article
Dual-Functional Electrolyte Additive for Lithium–Sulfur Batteries Limits Lithium Dendrite Formation and Increases Sulfur Utilization Rate
Batteries 2023, 9(9), 444; https://doi.org/10.3390/batteries9090444 - 30 Aug 2023
Viewed by 286
Abstract
Lithium–sulfur batteries (LSBs) have received great attention as promising candidates for next-generation energy-storage systems due to their high theoretical energy density. However, their practical energy density is limited by a large electrolyte-to-sulfur (E/S) ratio (>10 µL electrolyte/mg s), and their cycle [...] Read more.
Lithium–sulfur batteries (LSBs) have received great attention as promising candidates for next-generation energy-storage systems due to their high theoretical energy density. However, their practical energy density is limited by a large electrolyte-to-sulfur (E/S) ratio (>10 µL electrolyte/mg s), and their cycle performance encounters challenges from electrode passivation and Li dendrite formation. In this work, a dual-functional electrolyte additive of tetraethylammonium nitrate (TEAN) is presented to address these issues. NO3 as a high-donor-number (DN) salt anion can promote polysulfide dissolution, increase sulfur utilization, and alleviate electrode passivation. The tetraethylammonium cation can adsorb around Li protrusions to form a lithiophobic protective layer to inhibit the formation of Li dendrites. TEAN LSBs show improving capacity, cycling stability, and higher coulombic efficiency under lean electrolyte (5 μL electrolyte/mg s) conditions. Full article
(This article belongs to the Special Issue Interfacial Regulation for Lithium-Sulfur Batteries)
Show Figures

Graphical abstract

Article
Determination of the Contact Resistance of Planar Contacts: Electrically Conductive Adhesives in Battery Cell Connections
Batteries 2023, 9(9), 443; https://doi.org/10.3390/batteries9090443 - 29 Aug 2023
Viewed by 153
Abstract
This study presents a method to analyze the electrical resistance of planar contacts. The method can determine whether the contact resistance of the joint exhibits linear or non-linear behavior. By analyzing the current distribution over a planar contact, it can be determined whether [...] Read more.
This study presents a method to analyze the electrical resistance of planar contacts. The method can determine whether the contact resistance of the joint exhibits linear or non-linear behavior. By analyzing the current distribution over a planar contact, it can be determined whether an area-based contact resistance is justified or if other parameters define the contact resistance. Additionally, a quantitative evaluation of the factors that affect the measurement accuracy, including the positioning, the measurement equipment used, and the influence of the current injection on the sense pin was conducted. Based on these findings, the electrical contact resistance and the mechanical ultimate tensile force of a silver-filled epoxy-based adhesive are analyzed and discussed. The layer thickness and the lap joint length were varied. Overall, the investigated adhesive shows a low contact resistance and high mechanical strength of the same magnitude as that of well-established joining techniques, such as welding, press connections, and soldering. In addition to evaluating the mechanical and electrical properties, the electric conductive adhesive underwent an economic assessment. This analysis revealed that the material costs of the adhesive significantly contribute to the overall connection costs. Consequently, the effective costs in mass production are higher than those associated with laser beam welding. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

Article
SOC Estimation Methods for Lithium-Ion Batteries without Current Monitoring
Batteries 2023, 9(9), 442; https://doi.org/10.3390/batteries9090442 - 29 Aug 2023
Viewed by 183
Abstract
State of charge (SOC) estimation is an important part of a battery management system (BMS). As for small portable devices powered by lithium-ion batteries, no current sensor will be configured in BMS, which presents a challenge to traditional current-based SOC estimation algorithms. In [...] Read more.
State of charge (SOC) estimation is an important part of a battery management system (BMS). As for small portable devices powered by lithium-ion batteries, no current sensor will be configured in BMS, which presents a challenge to traditional current-based SOC estimation algorithms. In this work, an electrochemical model is developed for lithium batteries, and three methods, including the incremental seeking method, dichotomous method, and extended Kalman filter algorithm (EKF), are separately developed to establish the framework of current and SOC estimation simultaneously. The results show that the EKF algorithm performs better than the other two methods in terms of estimation accuracy and convergence speed. In addition, the estimation error of the EKF algorithm is within ±2%, which demonstrates its feasibility. Full article
Show Figures

Figure 1

Article
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on a Cubic Polynomial Degradation Model and Envelope Extraction
Batteries 2023, 9(9), 441; https://doi.org/10.3390/batteries9090441 - 29 Aug 2023
Viewed by 189
Abstract
Remaining useful life (RUL) prediction has become one of the key technologies for reducing costs and improving safety of lithium-ion batteries. To our knowledge, it is difficult for existing nonlinear degradation models of the Wiener process to describe the complex degradation process of [...] Read more.
Remaining useful life (RUL) prediction has become one of the key technologies for reducing costs and improving safety of lithium-ion batteries. To our knowledge, it is difficult for existing nonlinear degradation models of the Wiener process to describe the complex degradation process of lithium-ion batteries, and there is a problem with low precision in parameter estimation. Therefore, this paper proposes a method for predicting the RUL of lithium-ion batteries based on a cubic polynomial degradation model and envelope extraction. Firstly, based on the degradation characteristics of lithium-ion batteries, a cubic polynomial function is used to fit the degradation trajectory and compared with other nonlinear degradation models for verification. Secondly, a subjective parameter estimation method based on envelope extraction is proposed that estimates the actual degradation trajectory by using the average of the upper and lower envelope curves of the degradation data of lithium-ion batteries and uses the maximum likelihood estimation (MLE) method to estimate the unknown model parameters in two steps. Finally, for comparison with several typical nonlinear models, experiments are carried out based on the practical degradation data of lithium-ion batteries. The effectiveness of the proposed method to improve the accuracy of RUL prediction for lithium-ion batteries was demonstrated in terms of the mean square error (MSE) of the model and MSE of RUL prediction. Full article
(This article belongs to the Special Issue Battery Energy Storage in Advanced Power Systems)
Show Figures

Graphical abstract

Review
Rational Design of Bismuth Metal Anodes for Sodium-/Potassium-Ion Batteries: Recent Advances and Perspectives
Batteries 2023, 9(9), 440; https://doi.org/10.3390/batteries9090440 - 28 Aug 2023
Viewed by 145
Abstract
Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have drawn widespread attention for application in large-scale accumulation energy because of their plentiful resources and lower cost. However, the lack of anodes with high energy density and long cycle lifetimes has hampered the progress of [...] Read more.
Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have drawn widespread attention for application in large-scale accumulation energy because of their plentiful resources and lower cost. However, the lack of anodes with high energy density and long cycle lifetimes has hampered the progress of SIBs and PIBs. Bismuth (Bi), an alloying-type anode, on account of its high volumetric capacity and cost advantage, has become the most potential candidate for SIBs and PIBs. Nevertheless, Bi anodes undergo significant volume strain during the insertion and extraction of ions, resulting in the crushing of structures and a volatile solid electrolyte interface (SEI). As a result, the tactics to boost the electrochemical properties of Bi metal anodes in recent years are summarized in this study. Recent advances in designing nanostructure Bi-based materials are reviewed, and the reasonable effects of architectural design and compound strategy on the combination property are discussed. Some reasonable strategies and potential challenges for the design of Bi-based materials are also summarized. This review aims to provide practical guidance for the development of alloying-type anode materials for next-generation SIBs and KIBs. Full article
(This article belongs to the Special Issue Transition Metal Compound Materials for Secondary Batteries)
Show Figures

Graphical abstract

Review
Recent Progress in Flame-Retardant Polymer Electrolytes for Solid-State Lithium Metal Batteries
Batteries 2023, 9(9), 439; https://doi.org/10.3390/batteries9090439 - 28 Aug 2023
Viewed by 179
Abstract
Lithium-ion batteries (LIBs) have been widely applied in our daily life due to their high energy density, long cycle life, and lack of memory effect. However, the current commercialized LIBs still face the threat of flammable electrolytes and lithium dendrites. Solid-state electrolytes emerge [...] Read more.
Lithium-ion batteries (LIBs) have been widely applied in our daily life due to their high energy density, long cycle life, and lack of memory effect. However, the current commercialized LIBs still face the threat of flammable electrolytes and lithium dendrites. Solid-state electrolytes emerge as an answer to suppress the growth of lithium dendrites and avoid the problem of electrolyte leakage. Among them, polymer electrolytes with excellent flexibility, light weight, easy processing, and good interfacial compatibility with electrodes are the most promising for practical applications. Nevertheless, most of the polymer electrolytes are flammable. It is urgent to develop flame-retardant solid polymer electrolytes. This review introduces the latest advances in emerging flame-retardant solid polymer electrolytes, including Polyethylene oxide (PEO), polyacrylonitrile (PAN), Poly (ethylene glycol) diacrylate (PEGDA), polyvinylidene fluoride (PVDF), and so on. The electrochemical properties, flame retardancy, and flame-retardant mechanisms of these polymer electrolytes with different flame retardants are systematically discussed. Finally, the future development of flame-retardant solid polymer electrolytes is pointed out. It is anticipated that this review will guide the development of flame-retardant polymer electrolytes for solid-state LIBs. Full article
Show Figures

Graphical abstract

Article
Thermal Runaway Early Warning and Risk Estimation Based on Gas Production Characteristics of Different Types of Lithium-Ion Batteries
Batteries 2023, 9(9), 438; https://doi.org/10.3390/batteries9090438 - 28 Aug 2023
Viewed by 147
Abstract
Gas production analysis during the thermal runaway (TR) process plays a crucial role in early fire accident detection in electric vehicles. To assess the TR behavior of lithium-ion batteries and perform early warning and risk estimation, gas production and analysis were conducted on [...] Read more.
Gas production analysis during the thermal runaway (TR) process plays a crucial role in early fire accident detection in electric vehicles. To assess the TR behavior of lithium-ion batteries and perform early warning and risk estimation, gas production and analysis were conducted on LiNixCoyMn1-x-yO2/graphite and LiFePO4/graphite cells under various trigger conditions. The findings indicate that the unique gas signals can provide TR warnings earlier than temperature, voltage, and pressure signals, with an advanced warning time ranging from 16 to 26 min. A new parameter called the thermal runaway degree (TRD) is introduced, which is the product of the molar quantity of gas production and the square root of the maximum temperature during the TR process. TRD is proposed to evaluate the severity of TR. The research reveals that TRD is influenced by the energy density of cells and the trigger conditions of TR. This parameter allows for a quantitative assessment of the safety risk associated with different battery types and the level of harm caused by various abuse conditions. Despite the uncertainties in the TR process, TRD demonstrates good repeatability (maximum relative deviation < 5%) and can be utilized as a characteristic parameter for risk estimation in lithium-ion batteries. Full article
(This article belongs to the Special Issue Recent Advances in Battery Mechanism)
Show Figures

Graphical abstract

Article
Statistical Modeling Procedures for Rapid Battery Pack Characterization
Batteries 2023, 9(9), 437; https://doi.org/10.3390/batteries9090437 - 26 Aug 2023
Viewed by 326
Abstract
As lithium-ion battery (LIB) cells degrade over time and usage, it is crucial to understand their remaining capacity, also known as State of Health (SoH), and inconsistencies between cells in a pack, also known as cell-to-cell variation (CtCV), to appropriately operate and maintain [...] Read more.
As lithium-ion battery (LIB) cells degrade over time and usage, it is crucial to understand their remaining capacity, also known as State of Health (SoH), and inconsistencies between cells in a pack, also known as cell-to-cell variation (CtCV), to appropriately operate and maintain LIB packs. This study outlines efforts to model pack SoH and SoH CtCV of nickel-cobalt-aluminum (NCA) and lithium-iron-phosphate (LFP) battery packs consisting of four cells in series using pack-level voltage data. Using small training data sets and rapid testing procedures, partial least squares regression (PLS) models were built and achieved a mean absolute error of 0.38% and 1.43% pack SoH for the NCA and LFP packs, respectively. PLS models were also built that correctly categorized the packs as having low, medium, and high-ranked SoH CtCV 72.5% and 65% of the time for the NCA and LFP packs, respectively. This study further investigates the relationships between pack SoH, SoH CtCV, and the voltage response of the NCA and LFP packs. The slope of the discharge voltage response of the NCA packs was shown to have a strong correlation with pack dynamics and pack SoH, and the lowest SoH cell within the NCA packs was shown to dominate the dynamic response of the entire pack. Full article
(This article belongs to the Special Issue Modeling, Reliability and Health Management of Lithium-Ion Batteries)
Show Figures

Graphical abstract

Article
Ultramicroporous N-Doped Activated Carbon Materials for High Performance Supercapacitors
Batteries 2023, 9(9), 436; https://doi.org/10.3390/batteries9090436 - 24 Aug 2023
Viewed by 280
Abstract
Porous carbon electrode materials are utilized in supercapacitors with very fast charge/discharge and high stability upon cycling thanks to their electrostatic charge storage mechanism. Further enhancement of the performance of such materials can be achieved by doping them with heteroatoms which alter the [...] Read more.
Porous carbon electrode materials are utilized in supercapacitors with very fast charge/discharge and high stability upon cycling thanks to their electrostatic charge storage mechanism. Further enhancement of the performance of such materials can be achieved by doping them with heteroatoms which alter the kinetics of charge/discharge of the adsorbed species and result in pseudocapacitance phenomena. Here, microporous N-doped activated carbons were synthesized by thermochemical activation process. The structure and composition of the final material were adjusted by tuning the synthesis conditions and the choice of precursor molecules. In particular, N-doped activated carbons with a controlled specific surface area in the range of 270–1380 m2/g have been prepared by KOH-activation of sucrose/ammonium citrate mixture. By adjusting the composition of precursors, N-doping was varied from ca. 1.5 to 7.3 at%. The role of the components and synthesis conditions on the composition and structure of final products has been evaluated. The N-doped activated carbon with optimized structure and composition has demonstrated an outstanding performance as electrode material for aqueous electrolyte supercapacitors. The specific capacitance measured in a 3-electrode cell with 0.75 mg/cm2 loading of optimized activated carbon in 1M H2SO4 changed from 359 F/g at 0.5 A/g charging rate to 243 F/g at 20 A/g. Less than 0.01% of capacitance loss has been detected after 1000 charging/discharging cycles. Full article
(This article belongs to the Special Issue Emerging Materials and Technologies for Post-Lithium-Ion Batteries)
Show Figures

Figure 1

Article
Understanding and Mitigating the Dissolution and Delamination Issues Encountered with High-Voltage LiNi0.5Mn1.5O4
Batteries 2023, 9(9), 435; https://doi.org/10.3390/batteries9090435 - 24 Aug 2023
Viewed by 272
Abstract
In our initial study on the high-voltage 5 V cobalt-free spinel LiNi0.5Mn1.5O4 (LNMO) cathode, we discovered a severe delamination issue in the laminates when cycled at a high upper cut-off voltage (UCV) of 4.95 V, especially when a [...] Read more.
In our initial study on the high-voltage 5 V cobalt-free spinel LiNi0.5Mn1.5O4 (LNMO) cathode, we discovered a severe delamination issue in the laminates when cycled at a high upper cut-off voltage (UCV) of 4.95 V, especially when a large cell format was used. This delamination problem prompted us to investigate further by studying the transition metal (TM) dissolution mechanism of cobalt-free LNMO cathodes, and as a comparison, some cobalt-containing lithium nickel manganese cobalt oxides (NMC) cathodes, as the leachates from the soaking experiment might be the culprit for the delamination. Unlike other previous reports, we are interested in the intrinsic stability of the cathode in the presence of a baseline Gen2 electrolyte consisting of 1.2 M of LiPF6 in ethylene carbonate/ethyl methyl carbonate (EC/EMC), similar to a storage condition. The electrode laminates (transition metal oxides, transition metal oxides, TMOs, coated on an Al current collector with a loading level of around 2.5 mAh/cm2) or the TMO powders (pure commercial quality spinel LNMO, NMC, etc.) were stored in the baseline solution, and the transition metal dissolution was studied through nuclear magnetic resonance, such as 1H NMR, 19F NMR, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Significant electrolyte decomposition was observed and could be the cause that leads to the TM dissolution of LNMO. To address this TM dissolution, additives were introduced into the baseline electrolyte, effectively alleviating the issue of TM dissolution. The results suggest that the observed delamination is caused by electrolyte decompositions that lead to etching, and additives such as lithium difluorooxalato borate and p-toluenesulfonyl isocyanate can alleviate this issue by forming a firm cathode electrolyte interface. This study provides a new perspective on cell degradation induced by electrode/electrolyte interactions under storage conditions. Full article
(This article belongs to the Special Issue Behavior of Cathode Materials at High Voltage)
Show Figures

Graphical abstract

Back to TopTop